Organ transplantation has progressed with the comprehension of the major histocompatibility complex (MHC). It is true that the outcome of organ transplantation largely relies on how well rejection is managed. It is no exaggeration to say that to be well acquainted with MHC is a shortcut to control rejection. In human beings, MHC is generally recognized as human leukocyte antigens (HLA). Under the current circumstances, the number of alleles is still increasing, but the function is not completely understood. Their roles in organ transplantation are of vital importance, because mismatches of HLA alleles possibly evoke both cellular and antibody-mediated rejection. Even though the control of cellular rejection has improved by recent advances of immunosuppressants, there is no doubt that antibody-mediated rejection (AMR), which is strongly correlated with donor-specific anti-HLA antibodies (DSA), brings a poor outcome. Thus, to diagnose and treat AMR correctly is a clear proposition. In this review, we would like to focus on the detection of intra-graft DSA as a recent trend. Overall, here we will review the current knowledge regarding MHC, especially with intra-graft DSA, and future perspectives: HLA epitope matching; eplet risk stratification; predicted indirectly recognizable HLA epitopes etc. in the context of organ transplantation.
The advances in acute phase care have firmly established the practice of organ transplantation in the last several decades. Then, the next issues that loom large in the field of transplantation include antibody-mediated rejection (ABMR) and recurrent primary disease. Acute ABMR is a daunting hurdle in the performance of organ transplantation. The recent progress in desensitization and preoperative monitoring of donor-specific antibodies enables us to increase positive outcomes. However, chronic active ABMR is one of the most significant problems we currently face. On the other hand, recurrent primary disease is problematic for many recipients. Notably, some recipients, unfortunately, lost their vital organs due to this recurrence. Although some progress has been achieved in these two areas, many other factors remain largely obscure. In this review, these two topics will be discussed in light of recent discoveries.
In organ transplantation, human leukocyte antigen (HLA)-mismatch grafts not only induce the activation of cellular mediated immune response but also the development of chronic antibody-mediated rejection due to the donor-specific anti-HLA antibody (DSA) produced by B cells and plasma cells interacting with the graft endothelium. Significant improvement in long-term survival after transplantation can be expected if antibody-mediated rejection due to the DSA can be overcome. However, the mechanism of producing or controlling the DSA remains to be elucidated. In recent decades, “humanized” mouse models have been widely used for the basic research of human immune systems, but a humanized mouse model to analyze the mechanism of DSA production has not been established yet. Thus, we aimed to create a humanized mouse using a severe immunodeficiency mouse (NSG mouse) administered with human peripheral blood mononuclear cells (PBMCs). Initially, we detected a very low level of human total-IgG and no anti-HLA antibodies (Abs) in these mice. In our next attempt, we mixed PBMCs of various HLA antigenic combinations with or without regulatory T cells and preconditioned them by culturing on feeder cells stably transfected with human CD40 ligand (h-CD40L) alone or with h-CD40L and human B cell activating factor (h-BAFF). They were subsequently co-cultured with the corresponding irradiated stimulator PBMCs, and all cells were administered into naïve NSG mice. Although all three humanized models had sufficient human total-IgG and anti-HLA antibody production, allospecific anti-HLA Ab production was prominently suppressed whereas non-specific anti-HLA Abs were sufficiently detected. Therefore, this novel humanized mouse model might be useful for analyzing the mechanism of anti-allogeneic human B cell tolerance induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.