In response to decreases in the assimilation efficiency of CO2, plants oxidize the reaction center chlorophyll (P700) of photosystem I (PSI) to suppress reactive oxygen species (ROS) production. In hydro-cultured sunflower leaves experiencing essential mineral deficiencies, we analyzed the following parameters that characterize PSI and PSII: (1) the reduction-oxidation states of P700 [Y(I), Y(NA), and Y(ND)]; (2) the relative electron flux in PSII [Y(II)]; (3) the reduction state of the primary electron acceptor in PSII, QA (1 − qL); and (4) the non-photochemical quenching of chlorophyll fluorescence (NPQ). Deficiency treatments for the minerals N, P, Mn, Mg, S, and Zn decreased Y(II) with an increase in the oxidized P700 [Y(ND)], while deficiencies for the minerals K, Fe, Ca, B, and Mo decreased Y(II) without an increase in Y(ND). During the induction of photosynthesis, the above parameters showed specific responses to each mineral. That is, we could diagnose the mineral deficiency and identify which mineral affected the photosynthesis parameters.
Purpose
Phytosiderophores (PS) from grasses solubilize sparingly soluble iron (Fe), and the resultant PS-Fe is an Fe source even for dicots. Recently, the synthetic PS proline-2′-deoxymugineic acid (PDMA) has been developed as a moderately biodegradable Fe fertilizer for grasses. We aimed to investigate whether PDMA-Fe is also a good Fe source for dicots.
Methods
The availability of PDMA-Fe to cucumber was evaluated in a calcareous substrate and hydroponic cultures at pH 7.0–9.0 by determining chlorophyll level, PSII activity, and Fe uptake. EDDHA-Fe, EDTA-Fe, and citrate-Fe were used as controls. The reducibility of Fe chelates by roots was measured to determine the mechanism underlying differences in availability. Expressions of Fe deficiency-inducible genes were analyzed to estimate the Fe status in plants.
Results
The application of PDMA-Fe and EDDHA-Fe to a calcareous substrate reduced Fe-deficient chlorosis to a similar extent; however, the shoot Fe concentration was higher in the PDMA-Fe treatment. In the hydroponic culture, the availability of PDMA-Fe was higher than that of the other chelates at all pH levels, and this was confirmed by higher PSII activity and lower expression of Fe deficiency-inducible genes. The reducibility assay revealed that the reduction level of PDMA-Fe was greater than that of EDTA-Fe and citrate-Fe under alkaline pH.
Conclusions
PDMA-Fe is utilized by cucumber roots more efficiently than traditional synthetic chelates in both calcareous substrate and hydroponic cultures. The higher availability of PDMA-Fe may be attributed to its higher reducibility. Our findings suggest that PDMA-Fe could be a good Fe fertilizer for dicots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.