This letter reports a β-SiAlON:Eu2+ green phosphor with the composition of Eu0.00296Si0.41395Al0.01334O0.0044N0.56528. The phosphor powder exhibits a rod-like morphology with the length of ∼4μm and the diameter of ∼0.5μm. It can be excited efficiently over a broad spectral range between 280 and 480 nm, and has an emission peak at 535 nm with a full width at half maximum of 55 nm. It has a superior color chromaticity of x=0.32 and y=0.64. The internal and external quantum efficiencies of this phosphor is 70% and 61% at λex=303nm, respectively. This newly developed green phosphor has potential applications in phosphor-converted white LEDs.
Advances in solid state white lighting technologies witness the explosive development of phosphor materials (down-conversion luminescent materials). A large amount of evidence has demonstrated the revolutionary role of the emerging nitride phosphors in producing superior white light-emitting diodes for lighting and display applications. The structural and compositional versatility together with the unique local coordination environments enable nitride materials to have compelling luminescent properties such as abundant emission colors, controllable photoluminescence spectra, high conversion efficiency, and small thermal quenching/degradation. Here, we summarize the state-of-art progress on this novel family of luminescent materials and discuss the topics of materials discovery, crystal chemistry, structure-related luminescence, temperature-dependent luminescence, and spectral tailoring. We also overview different types of nitride phosphors and their applications in solid state lighting, including general illumination, backlighting, and laser-driven lighting. Finally, the challenges and outlooks in this type of promising down-conversion materials are highlighted.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.