Single-crystal nanowhiskers (NWs) composed of fullerene C70molecules were synthesized by the liquid-liquid interfacial precipitation method that usedm-xylene as a saturated solution of C70molecules. Bending behavior of the individual NWs was observed byin situtransmission electron microscopy equipped with nanonewton force measurements using an optical deflection method. The Young’s modulus of the NWs was estimated to be 0.3–1.9 GPa, which was 2–7% of the moduli of fullerene NWs with similar diameters synthesized using other solvents, that is, toluene and pyridine. The influence of the solvent used in the precipitation method on Young’s modulus is discussed.
We performed bending tests on single-crystal nanotubes composed of fullerene C 70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270-470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C 60 nanotubes of the same outer diameter.
We synthesized oriented bundle fibers of C70 crystal nanotubes (NTs) by a liquid-liquid interfacial precipitation method. The bundle fibers were characterized by transmission electron microscopy and scanning electron microscopy. We deduced that in the formation process, bundle fibers of C70 nanowhiskers (NWs) precipitate initially, and then elution occurs in the interior region of each NW to form C70 NT bundle fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.