Opsins are the universal photoreceptor molecules of all visual systems in the animal kingdom. They can change their conformation from a resting state to a signalling state upon light absorption, which activates the G protein, thereby resulting in a signalling cascade that produces physiological responses. This process of capturing a photon and transforming it into a physiological response is known as phototransduction. Recent cloning techniques have revealed the rich and diverse nature of these molecules, found in organisms ranging from jellyfish to humans, functioning in visual and non-visual phototransduction systems and photoisomerases. Here we describe the diversity of these proteins and their role in phototransduction. Then we explore the molecular properties of opsins, by analysing site-directed mutants, strategically designed by phylogenetic comparison. This site-directed mutant approach led us to identify many key features in the evolution of the photoreceptor molecules. In particular, we will discuss the evolution of the counterion, the reduction of agonist binding to the receptor, and the molecular properties that characterize rod opsins apart from cone opsins. We will show how the advances in molecular biology and biophysics have given us insights into how evolution works at the molecular level.
BackgroundWe have previously reported that xeno-transplanted human ESC-derived retinas are able to mature in the immunodeficient retinal degeneration rodent models, similar to allo-transplantations using mouse iPSC-derived retina. The photoreceptors in the latter developed outer segments and formed synapses with host bipolar cells, driving light responses of host retinal ganglion cells. In view of clinical application, here we further confirmed the competency of human iPSC-derived retina (hiPSC-retina) to mature in the degenerated retinas of rat and monkey models.MethodsHuman iPSC-retinas were transplanted in rhodopsin mutant SD-Foxn1 Tg(S334ter)3LavRrrc nude rats and two monkeys with laser-induced photoreceptor degeneration. Graft maturation was studied by immunohistochemistry and its function was examined by multi-electrode array (MEA) recording in rat retinas and visually-guided saccade (VGS) in a monkey.FindingsA substantial amount of mature photoreceptors in hiPSC-retina graft survived well in the host retinas for at least 5 months (rat) to over 2 years (monkey). In 4 of 7 transplanted rat retinas, RGC light responses were detected at the grafted area. A mild recovery of light perception was also suggested by the VGS performance 1.5 years after transplantation in that monkey.InterpretationOur results support the competency of hiPSC-derived retinas to be clinically applied for transplantation therapy in retinal degeneration, although the light responses observed in the present models were not conclusively distinguishable from residual functions of degenerating host retinas. The functional analysis may be further elaborated using other models with more advanced retinal degeneration.
SummaryIncreasing demand for clinical retinal degeneration therapies featuring human ESC/iPSC-derived retinal tissue and cells warrants proof-of-concept studies. Here, we established two mouse models of end-stage retinal degeneration with immunodeficiency, NOG-rd1-2J and NOG-rd10, and characterized disease progress and immunodeficient status. We also transplanted human ESC-derived retinal sheets into NOG-rd1-2J and confirmed their long-term survival and maturation of the structured graft photoreceptor layer, without rejection or tumorigenesis. We recorded light responses from the host ganglion cells using a multi-electrode array system; this result was consistent with whole-mount immunostaining suggestive of host-graft synapse formation at the responding sites. This study demonstrates an application of our mouse models and provides a proof of concept for the clinical use of human ESC-derived retinal sheets.
Melanopsin is the photoreceptor molecule of intrinsically photosensitive retinal ganglion cells, which serve as the input for various nonvisual behavior and physiological functions fundamental to organisms. The retina, therefore, possess a melanopsin-based nonvisual system in addition to the visual system based on the classical visual photoreceptor molecules. To elucidate the molecular properties of melanopsin, we have exogenously expressed mouse melanopsin in cultured cells. We were able to obtain large amounts of purified mouse melanopsin and conducted a comprehensive spectroscopic study of its photochemical properties. Melanopsin has an absorption maximum at 467 nm, and it converts to a meta intermediate having an absorption maximum at 476 nm. The melanopsin photoreaction is similar to that of squid rhodopsin, exhibiting bistability that results in a photosteady mixture of a resting state (melanopsin containing 11-cis-retinal) and an excited state (metamelanopsin containing all-trans-retinal) upon sustained irradiation. The absorption coefficient of melanopsin is 33000 ± 1000 M(-1) cm(-1), and its quantum yield of isomerization is 0.52; these values are also typical of invertebrate bistable pigments. Thus, the nonvisual system in the retina relies on a type of photoreceptor molecule different from that of the visual system. Additionally, we found a new state of melanopsin, containing 7-cis-retinal (extramelanopsin), which forms readily upon long-wavelength irradiation (yellow to red light) and photoconverts to metamelanopsin with short-wavelength (blue light) irradiation. Although it is unclear whether extramelanopsin would have any physiological role, it could potentially allow wavelength-dependent regulation of melanopsin functions.
Low dark noise is a prerequisite for rod cells, which mediate our dim-light vision. The low dark noise is achieved by the extremely stable character of the rod visual pigment, rhodopsin, which evolved from less stable cone visual pigments. We have developed a biochemical method to quickly evaluate the thermal activation rate of visual pigments. Using an isomerization locked chromophore, we confirmed that thermal isomerization of the chromophore is the sole cause of thermal activation. Interestingly, we revealed an unexpected correlation between the thermal stability of the dark state and that of the active intermediate MetaII. Furthermore, we assessed key residues in rhodopsin and cone visual pigments by mutation analysis and identified two critical residues (E122 and I189) in the retinal binding pocket which account for the extremely low thermal activation rate of rhodopsin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.