Abstract-In conventional least square (LS) regressions for nonlinear problems, it is not easy to obtain analytical derivatives with respect to target parameters that comprise a set of normal equations. Even if the derivatives can be obtained analytically or numerically, one must take care to choose the correct initial values for the iterative procedure of solving an equation, because some undesired, locally optimized solutions may also satisfy the normal equation.In the application of genetic algorithms (GAs) for nonlinear LS, it is not necessary to use normal equations, and a GA is also capable of avoiding localized optima. However, convergence of population and reliability of solutions depends on the initial domain of parameters, similarly to the choice of initial values in the abovementioned method using the normal equation. To overcome this disadvantage of applying GAs for nonlinear LS, we propose to use an adaptive domain method (ADM) in which the parameter domain can change dynamically by using several real-coded GAs with short lifetimes.Through an example problem, we demonstrate improvements in terms of both the convergence and the reliability by ADM. A further merit in the proposed method is that it does not require any specialized knowledge about GAs or their tuning. Therefore, the nonlinear LS by ADM with GAs are accessible to general scientists for various applications in many fields.Index Terms-Adaptive domain, convergence, real-coded genetic algorithm (GA), multimodal problem, nonlinear least square (LS) regression, reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.