Recent studies have demonstrated that micro (mi)RNA molecules can be detected in the circulation and can serve as potential biomarkers of various diseases. This study used microarray analysis to identify aberrantly expressed circulating miRNAs in patients with type 1 autoimmune hepatitis (AIH) compared with healthy controls. Patients with well-documented and untreated AIH were selected from the National Hospital Organization (NHO)-AIH-liver-network database. They underwent blood sampling and liver biopsy with inflammation grading and fibrosis staging before receiving treatment. To further confirm the microarray data, circulating expression levels of miR-21 and miR-122 were quantified by real-time quantitative polymerase chain reaction in 46 AIH patients, 40 patients with chronic hepatitis C (CHC), and 13 healthy controls. Consistent with the microarray data, serum levels of miR-21 were significantly elevated in AIH patients compared with CHC patients and healthy controls. miR-21 and miR-122 serum levels correlated with alanine aminotransferase levels. Circulating levels of miR-21 and miR-122 were significantly reduced in AIH patients with liver cirrhosis, and were inversely correlated with increased stages of fibrosis. By contrast, levels of circulating miR-21 showed a significant correlation with the histological grades of inflammation in AIH. We postulate that aberrantly expressed serum miRNAs are potential biomarkers of AIH and could be implicated in AIH pathogenesis. Alternations of miR-21 and miR-122 serum levels could reflect their putative roles in the mediation of inflammatory processes in AIH.
Early aggressive hemodynamic resuscitation using elevated plasma lactate as a marker is an essential component of managing critically ill patients. Therefore, measurement of blood lactate is recommended to stratify patients based on the need for fluid resuscitation and the risks of multiple organ dysfunction syndrome and death. Hyperlactatemia is common among critically ill patients, and lactate levels and their trend may be reliable markers of illness severity and mortality. Although hyperlactatemia has been widely recognized as a marker of tissue hypoxia/hypoperfusion, it can also result from increased or accelerated aerobic glycolysis during the stress response. Additionally, lactate may represent an important energy source for patients in critical condition. Despite its inherent complexity, the current simplified view of hyperlactatemia is that it reflects the presence of global tissue hypoxia/hypoperfusion with anaerobic glycolysis. This review of hyperlactatemia in critically ill patients focuses on its pathophysiological aspects and recent clinical approaches. Hyperlactatemia in critically ill patients must be considered to be related to tissue hypoxia/hypoperfusion. Therefore, appropriate hemodynamic resuscitation is required to correct the pathological condition immediately. However, hyperlactatemia can also result from aerobic glycolysis, unrelated to tissue dysoxia, which is unlikely to respond to increases in systemic oxygen delivery. Because hyperlactatemia may be simultaneously related to, and unrelated to, tissue hypoxia, physicians should recognize that resuscitation to normalize plasma lactate levels could be over-resuscitation and may worsen the physiological status. Lactate is a reliable indicator of sepsis severity and a marker of resuscitation; however, it is an unreliable marker of tissue hypoxia/hypoperfusion.
Results from the present study revealed that rat oatp-E is localized mainly to the corneal epithelium, ciliary body, iris, and retina. Furthermore, the findings appear to suggest that transport of T3 in the RPE may have a functional role for organic anion (i.e., thyroid hormone) transport in the rat eye.
Body temperature abnormalities, which occur because of several infectious and non-infectious etiologies, are among the most commonly noted symptoms of critically ill patients. These abnormalities frequently trigger changes in patient management. The purpose of this article was to review the contemporary literature investigating the definition and occurrence of body temperature abnormalities in addition to their impact on illness severity and mortality in critically ill non-neurological patients, particularly in patients with severe sepsis. Reports on the influence of fever on outcomes are inconclusive, and the presence of fever per se may not contribute to increased mortality in critically ill patients. In patients with severe sepsis, the impacts of elevated body temperature and hypothermia on mortality and the severity of physiologic decline are different. Hypothermia is significantly associated with an increased risk of mortality. In contrast, elevated body temperature may not be associated with increased disease severity or risk of mortality. In patients with severe sepsis, the effect of fever and fever control on outcomes requires further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.