Abstract-Endothelial PAS domain protein 1 (EPAS1) is a basic-helix-loop-helix/PAS domain transcription factor that is expressed preferentially in vascular endothelial cells. EPAS1 shares high homology with hypoxia-inducible factor-1␣ (HIF-1␣) and is reported to transactivate vascular endothelial growth factor (VEGF), fetal liver kinase-1 (Flk-1), and Tie2 promoters. In this study, we analyzed the role of EPAS1 in the process of angiogenesis. Using microarray technology, we looked for target genes regulated by EPAS1 in vascular endothelial cells. A total of 130 genes were upregulated by EPAS1, including fms-like tyrosine kinase-1 (Flt-1). Reporter analysis using human Flt-1 promoter and gel mobility shift assays showed that the heterodimer of EPAS1 and aryl hydrocarbon receptor nuclear translocator binds directly to HIF-1-binding site upstream of Flt-1 promoter and transactivates it. Small interfering RNA targeted to EPAS1 but not HIF-1␣ attenuated desferrioxamine-induced Flt-1 mRNA expression, thus EPAS1 is thought to play an essential role in hypoxic induction of Flt-1 gene. Furthermore, using mouse wound healing models, we demonstrated that adenovirus-mediated delivery of EPAS1 gene significantly induced the expression of VEGF, Flt-1, Flk-1, and Tie2 mRNA at the wound site and promoted mature angiogenesis. The proportion of the number of mural cells in newly formed vessels was significantly higher in EPAS1-treated wound area than VEGF-treated area. In conclusion, EPAS1
Oxidative status of albumin was not a useful biomarker for oxidative stress in practical use due to time-consuming measuring method. We evaluated oxidized, human nonmercaptalbumin measured more quickly than ever by a novel method using anion-exchange HPLC. In 60 subjects taking a general health examination, mean serum human nonmercaptalbumin level was 25.1 ± 3.0% with no gender difference but positive correlation with age. There were no links between human nonmercaptalbumin and C-reactive protein, γ-glutamyltransferase or iron, reportedly associated with oxidative stress. Human nonmercaptalbumin correlated with systolic blood pressure, pulse pressure and body mass index among physical findings. Positive correlations were observed between human nonmercaptalbumin and AST, LDH, BUN, or creatinine, suggesting that oxidative stress may link with liver injury and renal function. Human nonmercaptalbumin correlated with uric acid in female but not in male, suggesting that higher uric acid levels may be associated with increased oxidative stress only in female. As another gender difference, white blood cell counts correlated with human nonmercaptalbumin in female, while the parameters for red blood cells correlated with human nonmercaptalbumin in male. In conclusion, serum human nonmercaptalbumin level in healthy subjects was approximately 25% as previously reported. Oxidative stress may be closely associated with hypertension, obesity, liver injury, renal function, and anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.