Gold compounds have a long history of use in medicine. Auranofin was developed more than 30 years ago as an oral therapy for rheumatoid arthritis. Now, however, auranofin is rarely used in clinical practice despite its efficacy for treating rheumatoid arthritis because more novel antirheumatic medications are available. Although its use in clinical practice has decreased, studies on auranofin have continued and it shows promise for the treatment of several different diseases, including cancer and bacterial and parasitic infections. Several potential novel applications of auranofin for treating human disease have been proposed. Auranofin inhibits the activity of thioredoxin reductase (TrxR), an enzyme of the thioredoxin (Trx) system that is important for maintaining the intracellular redox state. Particularly in cancers, TrxR inhibition leads to an increase in cellular oxidative stress and induces apoptosis. TrxR overexpression is associated with aggressive tumor progression and poor survival in patients with breast, ovarian, and lung cancers. The Trx system may represent an attractive target for the development of new cancer treatments. Therefore, the TrxR inhibitor auranofin may be a potent anticancer agent. This review summarizes the current understanding of auranofin for cancer therapy.
Here, we have developed an extremely efficient in vivo Tn5-based mutagenesis procedure to construct a Deinococcus radiodurans insertion mutant library subsequently screened for sensitivity to genotoxic agents such as γ and UV radiations or mitomycin C. The genes inactivated in radiosensitive mutants belong to various functional categories, including DNA repair functions, stress responses, signal transduction, membrane transport, several metabolic pathways, and genes of unknown function. Interestingly, preliminary characterization of previously undescribed radiosensitive mutants suggests the contribution of cyclic di-AMP signaling in the recovery of D. radiodurans cells from genotoxic stresses, probably by modulating several pathways involved in the overall cell response. Our analyses also point out a new transcriptional regulator belonging to the GntR family, encoded by DR0265, and a predicted RNase belonging to the newly described Y family, both contributing to the extreme radioresistance of D. radiodurans. Altogether, this work has revealed new cell responses involved either directly or indirectly in repair of various cell damage and confirmed that D. radiodurans extreme radiation resistance is determined by a multiplicity of pathways acting as a complex network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.