Adenovirus (Ad) vectors are widely used in cancer gene therapies. However, compared to human patients, relatively limited information is available on gene transduction efficiency or cell-specific cytotoxicity in canine tumor cells transduced with Ad vectors. Since epidermal growth factor receptor (EGFR) is highly expressed on canine breast tumor cells, we sought to develop an Ad vector based on the RGD fiber-mutant adenovirus vector (AdRGD) that expresses canine caspase 3 under the control of EGFR promoter. The aims of this study were to achieve high transduction efficiency with transgene expression restricted to canine breast tumor cells. Using EGFR promoter-driven AdRGD, we were able to restrict transgene expression to canine breast tumor cells with no evidence of expression in normal cells. Canine breast tumor cells transduced with EGFR promoter-driven AdRGD carrying canine caspase 3 gene showed cytotoxic activity. We constructed a second AdRGD vector that expressed oxygen-dependent degradation (ODD)-caspase 3 under the control of the EGFR promoter; the fusion protein contains a core part of the ODD domain of hypoxia inducible factor-1 alpha (HIF-1α) fused to caspase 3. Transduction of canine breast tumor cells with EGFR promoter-driven AdRGD expressing ODD-caspase 3 induced a higher rate of cell death under hypoxic conditions compared with under normoxia. The results indicate that the EGFR promoter-driven AdRGD vectors will be of value for tumor-specific transgene expression and safe cancer gene therapy in dogs.
We previously showed that the promoter region of the human epidermal growth factor receptor (
hEGFR
) gene elicits high transduction efficiency, with transgene expression restricted to canine breast tumor cells. However, it was unclear whether this promoter induces tumor cell-specific transgene expression in canine urothelial carcinoma cells. Furthermore, compared with studies in human cancer cells, the utility of the telomerase reverse transcriptase (
TERT
) gene promoter for therapeutic transgene expression in canine cancer cells has not been evaluated thus far. Here, we compared the activity of these promoters in canine mammary tumor and urothelial carcinoma cells. Our results showed that compared with the
TERT
promoter, the
hEGFR
promoter was more useful as a tumor-specific promoter to induce efficient transgene expression in canine tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.