Synthetic ligands capable of recognizing the specific DNA sequences inside human mitochondria and modulating gene transcription are in increasing demand because of the surge in evidence linking mitochondrial genome and diseases. In the work described herein, we created a new type of mitochondria-specific synthetic ligand, termed MITO-PIPs, by conjugating a mitochondria-penetrating peptide with pyrrole-imidazole polyamides (PIPs). The designed MITO-PIPs showed specific localization inside mitochondria in HeLa cells and recognized the target DNA in a sequence-specific manner. Furthermore, MITO-PIPs that inhibit the binding of mitochondrial transcription factor A to the light-strand promoter (LSP) also triggered targeted transcriptional suppression. The tunability of PIPs' properties suggests the potential of the MITO-PIPs as potent modulators of not only mitochondrial gene transcription but also its DNA mutations.
While the central role of locus-specific acetylation of histone proteins in eukaryotic gene expression is well established, the availability of designer tools to regulate acetylation at particular nucleosome sites remains limited. Here, we develop a unique strategy to introduce acetylation by constructing a bifunctional molecule designated Bi-PIP. Bi-PIP has a P300/CBP-selective bromodomain inhibitor (Bi) as a P300/CBP recruiter and a pyrrole-imidazole polyamide (PIP) as a sequence-selective DNA binder. Biochemical assays verified that Bi-PIPs recruit P300 to the nucleosomes having their target DNA sequences and extensively accelerate acetylation. Bi-PIPs also activated transcription of genes that have corresponding cognate DNA sequences inside living cells. Our results demonstrate that Bi-PIPs could act as a synthetic programmable histone code of acetylation, which emulates the bromodomain-mediated natural propagation system of histone acetylation to activate gene expression in a sequence-selective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.