Summary Avian influenza A viruses rarely infect humans, but if they do and transmit among them, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern due to the appreciable case fatality rate associated with these infections (>25%), potential instances of human-to-human transmission1, and the lack of pre-existing immunity among humans to viruses of this subtype. Here, we therefore characterized two early human A(H7N9) isolates, A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9; hereafter referred to as Anhui/1 and Shanghai/1, respectively). In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011; H7N9; Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/04/2009; H1N1; CA04). Anhui/1, Shanghai/1, and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates (NHPs), Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs upon intranasal inoculation. Most critically, Anhui/1 transmitted via respiratory droplets in one of three pairs of ferrets. Glycan arrays demonstrated that Anhui/1, Shanghai/1, and A/Hangzhou/1/2013 (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was less sensitive than a pandemic 2009 H1N1 virus to neuraminidase inhibitors, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets, and NHPs and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Pigs and humans have shared influenza A viruses (IAV) since at least 1918, and many interspecies transmission events have been documented since that time. However, despite this interplay, relatively little is known regarding IAV circulating in swine around the world compared with the avian and human knowledge base. This gap in knowledge impedes our understanding of how viruses adapted to swine or man impacts the ecology and evolution of IAV as a whole and the true impact of swine IAV on human health. The pandemic H1N1 that emerged in 2009 underscored the need for greater surveillance and sharing of data on IAV in swine. In this paper, we review the current state of IAV in swine around the world, highlight the collaboration between international organizations and a network of laboratories engaged in human and animal IAV surveillance and research, and emphasize the need to increase information in high-priority regions. The need for global integration and rapid sharing of data and resources to fight IAV in swine and other animal species is apparent, but this effort requires grassroots support from governments, practicing veterinarians and the swine industry and, ultimately, requires significant increases in funding and infrastructure.
A fundamental goal in the biological sciences is the definition of groups of organisms based on evolutionary history and the naming of those groups. For influenza A viruses (IAVs) in swine, understanding the hemagglutinin (HA) genetic lineage of a circulating strain aids in vaccine antigen selection and allows for inferences about vaccine efficacy. Previous reporting of H1 virus HA in swine relied on colloquial names, frequently with incriminating and stigmatizing geographic toponyms, making comparisons between studies challenging. To overcome this, we developed an adaptable nomenclature using measurable criteria for historical and contemporary evolutionary patterns of H1 global swine IAVs. We also developed a web-accessible tool that classifies viruses according to this nomenclature. This classification system will aid agricultural production and pandemic preparedness through the identification of important changes in swine IAVs and provides terminology enabling discussion of swine IAVs in a common context among animal and human health initiatives.
Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans.DOI: http://dx.doi.org/10.7554/eLife.12217.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.