The epithelial-mesenchymal transition (EMT) plays a critical role in embryonic development. EMT is also involved in cancer progression and metastasis and it is probable that a common molecular mechanism is shared by these processes. Cancer cells undergoing EMT can acquire invasive properties and enter the surrounding stroma, resulting in the creation of a favorable microenvironment for cancer progression and metastasis. Furthermore, the acquisition of EMT features has been associated with chemoresistance which could give rise to recurrence and metastasis after standard chemotherapeutic treatment. Thus, EMT could be closely involved in carcinogenesis, invasion, metastasis, recurrence, and chemoresistance. Research into EMT and its role in cancer pathogenesis has progressed rapidly and it is now hypothesized that novel concepts such as cancer stem cells and microRNA could be involved in EMT. However, the involvement of EMT varies greatly among cancer types, and much remains to be learned. In this review, we present recent findings regarding the involvement of EMT in cancer progression and metastasis and provide a perspective from clinical and translational viewpoints. (Cancer Sci 2010; 101: 293-299) D evelopment of distant metastases is the final stage of solid cancer progression and is responsible for the majority of cancer-related deaths.(1) Distant metastasis alone or with concurrent locoregional recurrence accounts for nearly 80% of all first relapses in women with breast cancer.(2) While clinically of great importance, the biology of metastasis remains unsolved. The process of tumor metastasis consists of multiple steps, all of which are required to achieve tumor spreading.(3,4) First, cancer cells escape from the primary tumor site. Next, cancer cells invade the tumor stroma and enter the blood circulation directly or the lymphatic system via intravasation. Most circulating cancer cells undergo apoptosis due to anoikis conditions.(5) If cancer cells survive in circulation they may reach more suitable sites by attaching to endothelial cells and extravasating from the circulation into the surrounding tissues. Finally, distal colonization requires that cancer cells invade and grow in the new environment.Recently, the concept of the epithelial-mesenchymal transition (EMT), as developed in the field of embryology, has been extended to cancer progression and metastasis.(6,7) In vitro and experimental animal model data now support the role of EMT in metastasis, concepts supported by analyses of clinical samples. Indeed, the biology of EMT has been clarified in tumor samples through use of EMT-associated markers, such as mesenchymalspecific markers (i.e. vimentin and fibronectin), (8,9) epithelial specific markers (i.e. E-cadherin and cytokeratin), (10,11) and transcription factors (i.e. SNAIL and SLUG). (12) Most recently, several intriguing studies have described the novel mechanism underlying EMT activation. In the current study, we will discuss the role of small non-coding RNA (micro-RNA) in regulating EMT-r...
Circulating tumor cells (CTC) in blood have attracted attention both as potential seeds for metastasis and as biomarkers. However, most CTC detection systems might miss epithelial-mesenchymal transition (EMT)-induced metastatic cells because detection is based on epithelial markers. First, to discover novel markers capable of detecting CTCs in which EMT has not been repressed, microarray analysis of 132 colorectal cancers (CRC) from Japanese patients was conducted, and 2,969 genes were detected that were overexpressed relative to normal colon mucosa. From the detected genes, we selected those that were overexpressed CRC with distant metastasis. Then, we analyzed the CRC metastasis-specific genes (n ¼ 22) to determine whether they were expressed in normal circulation. As a result, PLS3 was discovered as a CTC marker that was expressed in metastatic CRC cells but not in normal circulation. Using fluorescent immunocytochemistry, we validated that PLS3 was expressed in EMTinduced CTC in peripheral blood from patients with CRC with distant metastasis. PLS3-expressing cells were detected in the peripheral blood of approximately one-third of an independent set of 711 Japanese patients with CRC. Multivariate analysis showed that PLS3-positive CTC was independently associated with prognosis in the training set (n ¼ 381) and the validation set [n ¼ 330; HR ¼ 2.17; 95% confidence interval (CI) ¼ 1.38-3.40 and HR ¼ 3.92; 95% CI ¼ 2.27-6.85]. The association between PLS3-positive CTC and prognosis was particularly strong in patients with Dukes B (HR ¼ 4.07; 95% CI ¼ 1.50-11.57) and Dukes C (HR ¼ 2.57; 95% CI ¼ 1.42-4.63). PLS3 is a novel marker for metastatic CRC cells, and it possesses significant prognostic value. Cancer Res; 73(7); 2059-69. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.