The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip(1). Given the difficulty in determining friction by seismological methods(1), elucidating constraints are derived from experimental studies(2-9). Here we review a large set of published and unpublished experiments (similar to 300) performed in rotary shear apparatus at slip rates of 0.1-2.6 ms(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built(4-6), quartz-built(3) and carbonate-built(7,8)) rocks and non-cohesive rocks (clay-rich(9), anhydrite, gypsum and dolomite(10) gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger(11,12) a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates(13,14) suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved
[1] To understand how frictional melting affects fault instability, we performed a series of high-velocity friction experiments on gabbro at slip rates of 0.85-1.49 m s À1 , at normal stresses of 1.2-2.4 MPa and with displacements up to 124 m. Experiments have revealed two stages of slip weakening; one following the initial slip and the other immediately after the second peak friction. The first weakening is associated with flash heating, and the second weakening is due to the formation and growth of a molten layer along a simulated fault. The two stages of weakening are separated by a marked strengthening regime in which melt patches grow into a thin, continuous molten layer at the second peak friction. The frictional coefficient decays exponentially from 0.8-1.1 to 0.6 during the second weakening. The host rocks are separated completely by a molten layer during this weakening so that the shear resistance is determined by the gross viscosity and shear strain rate of the molten layer. Melt viscosity increases notably soon after a molten layer forms. However, a fault weakens despite the increase in melt viscosity, and the second weakening is caused by the growth of molten layer resulting in the reduction in shear strain rate of the molten layer. Very thin melt cannot be squeezed out easily from a fault zone so that the rate of melting would be the most critical factor in controlling the slip-weakening distance. Effect of frictional melting on fault motion can be predicted by solving a Stefan problem dealing with moving host rock/molten zone boundaries.Citation: Hirose, T., and T. Shimamoto (2005), Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting,
High-velocity weakening of faults may drive fault motion during large earthquakes. Experiments on simulated faults in Carrara marble at slip rates up to 1.3 meters per second demonstrate that thermal decomposition of calcite due to frictional heating induces pronounced fault weakening with steady-state friction coefficients as low as 0.06. Decomposition produces particles of tens of nanometers in size, and the ultralow friction appears to be associated with the flash heating on an ultrafine decomposition product. Thus, thermal decomposition may be an important process for the dynamic weakening of faults.
[1] Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical formunder a normal stress s n , slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of highvelocity rotary shear experiments on rocks, performed for s n in the range 1-20 MPa and slip rates in the range 0.5-2 m s À1 , is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with s n , R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.