Continuing the project described in Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for SU UMa-type dwarf novae mainly observed during the 2012-2013 season. We found three objects (V444 Peg, CSS J203937, and MASTER J212624) having strongly positive period derivatives despite the long orbital period (P orb ). By using the period of growing stage (stage A) superhumps, we obtained mass ratios for six objects. We characterized nine new WZ Sge-type dwarf novae. We made a pilot survey of the decline rate in the slowly fading parts of SU UMa-type and WZ Sge-type outbursts. The decline time scale was found to generally follow an expected P 1/4 orb dependence, and WZ Sge-type outbursts also generally follow this trend. There are some objects which show slower decline rates, and we consider these objects good candidates for period bouncers. We also studied unusual behavior in some objects, including BK Lyn which made a transition from an ER UMa-type state to a novalike (standstill) state in 2013, and unusually frequent occurrences of superoutbursts in NY Ser and CR Boo. We applied the least absolute shrinkage and selection operator (Lasso) power spectral analysis, which has been proven to be very effective in analyzing the Kepler data, to the ground-based photometry of BK Lyn, and detected a dramatic disappearance of the signal of negative superhumps in 2013. We suggested that the mass-transfer rates did not strongly vary between the ER UMa-type state and novalike state in BK Lyn, and this transition was less likely caused by a systematic variation of the mass-transfer rate.
We report on photometric observations of two WZ Sge-type dwarf novae, MASTER OT J211258.65+242145.4 and MASTER OT J203749.39+552210.3, which underwent outbursts in 2012. Early superhumps were recorded in both systems. During the superoutburst plateau, ordinary superhumps with a period of 0.060291(4) d (MASTER J211258) and with 0.061368(11) d (MASTER J203749) on average were observed. MASTERJ211258 and MASTERJ203749 exhibited eight post-superoutburst rebrightenings and more than four, respectively. In the final part of the superoutburst, an increase in superhump period was seen in both systems. We made a survey of WZSge-type dwarf novae with multiple rebrightenings, and confirmed that the superhump periods of WZSge-type dwarf novae with multiple rebrightenings were longer than those of WZSge-type dwarf novae without a rebrightening. Although WZSge-type dwarf novae with multiple rebrightenings have been thought to be likely candidates for period bouncers based on their low mass ratio (q), inferred from the period of fully grown (stage B) superhumps, our new method of using the period of growing superhumps (stage A superhumps), however, implies higher q's than those expected from stage B superhumps. These q values appear to be consistent with the duration of the stage A superoutbursts, which likely reflects the growth time of the 3W1 resonance. We present a working hypothesis that the small fractional superhump excesses for stage B superhumps in these systems may be explained by a gas pressure effect that works more efficiently in these systems than in ordinary SU UMa-type dwarf novae. This result forms a new picture that WZSge-type dwarf novae with multiple rebrightenings and SU UMa-type ones without a rebrightening (they are not period bouncers) are located in the same place on the evolutionary track.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.