A combined system comprising the TrueBeam linear accelerator and a new real‐time, tumor‐tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory‐gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory‐gated radiotherapy using SyncTraX, the following were performed: 1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor‐driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half‐value layer (HVL in mm AL), effective kVp, and air kerma, using a solid‐state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was <227 ms for each photon beam. The mean of the positional tracking error was <0.4 mm for sinusoidal patterns and for the pattern in the case of a lung cancer patient. The air‐kerma rates from one fluoroscopy direction were 1.93±0.01, 2.86±0.01, 3.92±0.04, 5.28±0.03, and 6.60±0.05 mGy/min for 70, 80, 90, 100, and 110 kV X‐ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible.PACS number(s): 87.53.Bn, 87.55.km, 87.55.Qr
Considerable interfractional dose variation was observed in three critical OARs. At the escalated prescription dose of breathhold IMRT, the dose variations could exceed the dose variations using 3D-CRT at the safe prescription dose level, indicating that a dose-escalation strategy based solely on the initial advantageous dose distribution in a breathhold IMRT can be problematic. Given the current limitations for predicting or coping with variation throughout the treatment course, the use of POV should be considered for safely delivering escalated doses to patients with pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.