Although quantum key distribution is regarded as promising secure communication, security of Y00 protocol proposed by Yuen in 2000 for the affinity to conventional optical communication is not well-understood yet; its security has been evaluated only by the eavesdropper's error probabilities of detecting individual signals or masking size, the number of hidden signal levels under quantum and classical noise. Our study is the first challenge of evaluating the guessing probabilities on shared secret keys for pseudorandom number generators in a simplified Y00 communication system based on quantum multiple hypotheses testing theory. The result is that even unlimitedly long known-plaintext attack only lets the eavesdropper guess the shared secret keys of limited lengths with a probability strictly <1. This study will give some insights for detailed future works on this quantum communication protocol.
In our previous work, it was demonstrated that the attacker could not pin-down the correct keys to start the Y00 protocol with a probability of one under the assistance of unlimitedly long known-plaintext attacks and optimal quantum measurements on the attacker's quantum memory.However, there were several assumptions that the Y00 system utilized linear-feedback shift registers as pseudo-random-number generators, and a fast correlation attack was disabled by irregular mapping on the Y00 systems. This study generalizes such an attack to remove the assumptions of the previous work. The framework of the security analyses of this study reiterates two well-known results from the past: (1) Y00 systems would be cryptanalyzed when the system is not designed well; (2) the system is possibly information-theoretically secure when the system is designed well, although the attacker's confidence in the correct key increases over time but the success probability of key recovery does not reach unity in finite time; (3) the breach time of the shared keys is increasingly threatened with time. Hence, a key-refreshment procedure for the Y00 protocol is provided herein.Such security analyses are important not only in key refreshment but also in initial key agreement situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.