The composition of photosystem II (PSII) in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017 was investigated to enhance the general understanding of the energetics of the PSII reaction center. We first purified photochemically active complexes consisting of a 47-kDa Chl protein (CP47), CP43 (PcbC), D1, D2, cytochrome b 559, PsbI, and a small polypeptide. The pigment composition per two pheophytin (Phe) a molecules was 55 ؎ 7 Chl d, 3.0 ؎ 0.4 Chl a, 17 ؎ 3 ␣-carotene, and 1.4 ؎ 0.2 plastoquinone-9. The special pair was detected by a reversible absorption change at 713 nm (P713) together with a cation radical band at 842 nm. FTIR difference spectra of the specific bands of a 3-formyl group allowed assignment of the special pair. The combined results indicate that the special pair comprises a Chl d homodimer. The primary electron acceptor was shown by photoaccumulation to be Phe a, and its potential was shifted to a higher value than that in the Chl a/Phe a system. The overall energetics of PSII in the Chl d system are adjusted to changes in the redox potentials, with P713 as the special pair using a lower light energy at 713 nm. Taking into account the reported downward shift in the potential of the special pair of photosystem I (P740) in A. marina, our findings lend support to the idea that changes in photosynthetic pigments combine with a modification of the redox potentials of electron transfer components to give rise to an energetic adjustment of the total reaction system. Acaryochloris marina ͉ FTIR ͉ reaction center ͉ photosynthesis ͉ electron transfer C hlorophyll (Chl) a has a ubiquitous role as an electron donor in the photochemical reactions of oxygenic photosynthesis, in which two kinds of photosystem, namely photosystem I (PSI) and photosystem II (PSII), cooperatively drive photosynthetic electron flow from water to NADP ϩ . The reduced cofactor, NADPH, is then used for CO 2 fixation. Chl a is a key pigment that serves as an electron donor called the special pair in PSI and PSII. Acaryochloris spp. are unique cyanobacteria that differ from the majority of photosynthetic organisms by having Chl d (3-desvinyl-3-formyl Chl a) (1-4) as the major pigment (Ͼ95%); Chl a is a minor component but is never absent (5, 6). In photosynthetic organisms, changes in pigment composition affect both the function of pigments and their reaction environments, including the modified proteins that accommodate them. Photosynthetic pigments function in two roles: as lightharvesting components and as electron transfer components. Light harvesting is mainly governed by the orientation and energy levels of pigments, and, in this context, a particular excitation energy level is not an absolute precondition for function, but a relative one. On the other hand, electron transfer reactions are governed by an absolute redox potential, because the photosynthetic oxidation of water requires a very high potential, whereas reduction of NADP ϩ requires a very low potential. For this reason, it is of particul...
The structure and the electronic properties of P680 and its radical cation in photosystem II (PSII) were studied by means of Fourier transform infrared spectroscopy (FTIR). Light-induced P680+/P680 FTIR difference spectra in the mid- and near-IR regions were measured using PSII membranes from spinach, core complexes from Thermosynechococcus elongatus, and reaction center (RC) complexes (D1-D2-Cytb559) from spinach. The spectral features of the former two preparations were very similar, indicating that the structures of P680 and its radical cation are virtually identical between membranes and cores and between plants and cyanobacteria. In sharp contrast, the spectrum of the RC complexes exhibited significantly different features. A positive doublet at approximately 1724 and approximately 1710 cm-1 due to the 131-keto C=O stretches of P680+ in the membrane and core preparations were changed to a prominent single peak at 1712 cm-1 in the RC complexes. This observation was interpreted to indicate that a positive charge on P680+ was extensively delocalized over the chlorophyll dimer in RC, whereas it was mostly localized on one chlorophyll molecule (70-80%) in intact P680. The significant change in the electronic structure of P680+ in RC was supported by a dramatic change in the characteristics of a broad intervalence band in the near-IR region and relatively large shifts of chlorin ring bands. It is proposed that the extensive charge delocalization in P680+ mainly causes the decrease in the redox potential of P680+/P680 in isolated RC complexes. This potential decrease explains the well-known phenomenon that YZ is not oxidized by P680+ in RC complexes.
Photochemically active photosystem (PS)IIn addition to P740, the difference spectrum contained an additional band at 728 nm. The redox potentials of P740 were estimated to be 439 mV by spectroelectrochemistry; this value was comparable with the potential of P700 in other cyanobacteria and higher plants. This suggests that the overall energetics of the PS I reaction were adjusted to the electron acceptor side to utilize the lower light energy gained by P740. The distribution of charge in P740 was estimated by a density functional theory calculation, and a partial localization of charge was predicted to P1 Chl (special pair Chl on PsaA). Based on differences in the protein matrix and optical properties of P740, construction of the PS I core in A. marina was discussed.
This new polymorphism in the ALDH2 promoter is present in all populations studied. Further analysis in other ethnic groups is necessary to establish this as an additional risk factor for alcoholism.
Protein aggregation is a critical problem for biotechnology and pharmaceutical industries. Despite the fact that soluble proteins have been used for many applications, our understanding of the effect of the solution chemistry on protein aggregation still remains to be elucidated. This paper investigates the process of thermal aggregation of lysozyme in the presence of various types of salts. The simple law was found; the aggregation rate of lysozyme increased with increasing melting temperature of the protein (T (m)) governed by chemical characteristics of additional salts. Ammonium salts were, however, ruled out; the aggregation rates of lysozyme in the presence of the ammonium salts were smaller than the ones estimated from T (m). Comparing with sodium salts, ammonium salts increased the solubility of the hydrophobic amino acids, indicating that ammonium salts adsorb the hydrophobic region of proteins, which leads to the decrease in aggregation more effectively than sodium salts. The positive relation between aggregation rate and T (m) was described by another factor such as the surface tension of salt solutions. Fourier transform infrared spectral analysis showed that the thermal aggregates were likely to form beta-sheet in solutions that give high molar surface tension increment. These results suggest that protein aggregation is attributed to the surface free energy of the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.