ISG20 is an interferon-induced antiviral exoribonuclease that acts on single-stranded RNA and also has minor activity towards single-stranded DNA. It belongs to the DEDDh group of RNases of the DEDD exonuclease superfamily. We have solved the crystal structure of human ISG20 complexed with two Mn 2þ ions and uridine 5 0 -monophosphate (UMP) at 1.9 A resolution. Its structure, including that of the active site, is very similar to those of the corresponding domains of two DEDDh-group DNases, the e subunit of Escherichia coli DNA polymerase III and E. coli exonuclease I, strongly suggesting that its catalytic mechanism is identical to that of the two DNases. However, ISG20 also has distinctive residues, Met14 and Arg53, to accommodate hydrogen bonds with the 2 0 -OH group of the UMP ribose, and these residues may be responsible for the preference of ISG20 for RNA substrates.
Escherichia coli ferredoxin (Fdx) is an adrenodoxin-type [2Fe-2S] ferredoxin. Recent genetic analyses show that it has an essential role in the maturation of various iron-sulfur (Fe-S) proteins. Fdx probably functions as a component of the complex machinery responsible for the biogenesis of Fe-S clusters. Its crystal structure was determined by the multiple-wavelength anomalous dispersion method using the iron atoms in the [2Fe-2S] cluster of the protein and then refined to R and R(free) values of 0.255 and 0.278, respectively, at 1.7 A resolution. The structure of Fdx is similar to the structures of bovine adrenodoxin (Adx) and Pseudomonas putida putidaredoxin (Pdx) whose respective root-mean-square deviations of the corresponding Calpha atoms are 1.8 and 2.2 A. This analysis also revealed the structure of the C-terminal residues protruding into the solvent, which is missing in Adx and Pdx. The [2Fe-2S] cluster is located at the edge of the molecule and bonds with the Sgamma atoms of Cys42, Cys48, Cys51, and Cys87. Electrostatic potential analysis showed that the surface of Fdx has two negatively charged areas separated by a hydrophobic lane. One is conserved on the surface of Adx which is an area of interaction with adrenodoxin reductase. Cys46 is located on the molecular surface in the vicinity of the [2Fe-2S] cluster, an indication that it may be involved in Fe-S cluster formation.
A simple method has already been devised for extensive purification of four respiratory components from P8eudomona8 aerugino8a in a true water-soluble state without the aid of detergents (Horio, 1958a). These components were called P8eudomona8 (P)-cytochrome-554, P-cytochrome-551, P-blue protein and P-cytochrome oxidase (Horio, 1958b; Horio, Higashi, Matsubara et al. 1958). The same microorganism also contains another cytochrome, P-cytochrome-560, which is similar to the so-called cytochrome b, and which has not yet been solubilized without the aid of sodium cholate (Horio, 1958a). From studies on purified respiratory components, cellular fragments and whole cells, Horio (1958b) and Yamanaka (1959) have concluded that in the electron-transferring system of P. aerugino8a P-cytochrome-551 and
1. Chlorophyllase [EC 3.1.1.14] was extracted from the acetone-dried powder of the chloroplasts of greened rye seedlings with 1% cholate, and purified 870-fold with a yield of about 30%. The purification procedure was composed of fractionations with acetone and ammonium sulfate, and hydrophobic chromatography on a phenyl-Sepharose CL-4B column. 2. The purified enzyme was pure as analyzed by molecular-sieve chromatography and isoelectric electrophoresis. It had an isoelectric point of 4.5 and a molecular weight of 39,000. 3. The purified enzyme was stable at pH 6-9 and 4 degrees C. At pH 7.5, it was stable in the presence and absence of 30% acetone. However, at 30 degrees C, it was not stable above a 10% concentration of acetone. 4. The purified enzyme hydrolyzed chlorophylls a and b from spinach into chlorophyllides a and b and phytols, respectively; and bacteriochlorophyll a from Rhodospirillum rubrum into bacteriochlorophyllide a and a derivative of phytol, possibly all-trans-geranylgeraniol. The hydrolysis rates were stimulated to their maxima in the presence of 30% acetone; maximum stimulation was about 50% with bacteriochlorophyll a and about 400% with chlorophyll a. 5. At pH 7.5 and 30 degrees C in the presence of 30% acetone, the Km values and specific activities were 12 microM and 480 nmol . min-1 . mg-1 for chlorophylls a, and 4 microM and 170 nmol . min-1 . mg-1 for R. rubrum bacteriochlorophyll a, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.