Periodontal disease is caused by dental plaque biofilms, and the removal of these biofilms from the root surface of teeth plays a central part in its treatment. The conventional treatment for periodontal disease fails to remove periodontal infection in a subset of cases, such as those with complicated root morphology. Adjunctive antimicrobial photodynamic therapy (aPDT) has been proposed as an additional treatment for this infectious disease. Many periodontal pathogenic bacteria are susceptible to low-power lasers in the presence of dyes, such as methylene blue, toluidine blue O, malachite green, and indocyanine green. aPDT uses these light-activated photosensitizer that is incorporated selectively by bacteria and absorbs a low-power laser/light with an appropriate wavelength to induce singlet oxygen and free radicals, which are toxic to bacteria. While this technique has been evaluated by many clinical studies, some systematic reviews and meta-analyses have reported controversial results about the benefits of aPDT for periodontal treatment. In the light of these previous reports, the aim of this review is to provide comprehensive information about aPDT and help extend knowledge of advanced laser therapy.
Within the limits of this study, ICG-Nano/c with low-level diode laser (0.5 W; 805 nm) irradiation showed an aPDT-like effect, which might be useful for a potential photodynamic periodontal therapy.
Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjunctive strategy for periodontitis treatments. However, use of aPDT for periodontal treatment is complicated by the difficulty in accessing morphologically complex lesions such as furcation involvement, which the irradiation beam (which is targeted parallel to the tooth axis into the periodontal pocket) cannot access directly. The aim of this study was to validate a modified aPDT method that photosensitizes indocyanine green-loaded nanospheres through the gingivae from outside the pocket using a diode laser. To establish this trans-gingival irradiation method, we built an in vitro aPDT model using a substitution for gingivae. Irradiation conditions and the cooling method were optimized before the bactericidal effects on Porphyromonas gingivalis were investigated. The permeable energy through the gingival model at irradiation conditions of 2 W output power in a 50% duty cycle was comparable with the transmitted energy of conventional irradiation. Intermittent irradiation with air cooling limited the temperature increase in the gingival model to 2.75 °C. The aPDT group showed significant bactericidal effects, with reductions in colony-forming units of 99.99% after 5 min of irradiation. This effect of aPDT against a periodontal pathogen demonstrates the validity of trans-gingival irradiation for periodontal treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.