Fipronil is one of the most effective insecticides to control the invasive ant Linepithema humile, but its effectiveness has been assessed without considering the genetic differences among L. humile supercolonies. We hypothesized that the susceptibility of the ant to fipronil might differ among supercolonies. If so, dosage and concentration of fipronil may need to be adjusted for effective eradication of each supercolony. The relative sensitivities of four L. humile supercolonies established in Hyogo (Japan) to fipronil baits were examined based on their acute toxicity (48-h LC(50)). Toxicities of fipronil to seven ground arthropods, including four native ant species, one native isopoda, and two cockroaches were also determined and compared to that of L. humile supercolonies using species sensitivity distributions. Marked differences in susceptibility of fipronil were apparent among the supercolonies (P < 0.008), with the 'Japanese main supercolony' (271 μg L(-1)) being five to ten times more sensitive to fipronil than other colonies (1183-2782 μg L(-1)). Toxicities to non-target species (330-2327 μg L(-1)) were in the same range as that of L. humile, and SSDs between the two species groups were not significantly different (t = -1.389, P = 0.180), suggesting that fipronil's insecticidal activity is practically the same for L. humile as for non-target arthropods. Therefore, if the invasive ant is to be controlled using fipronil, this would also affect the local arthropod biodiversity. Only the 'Japanese main supercolony' can be controlled with appropriate bait dosages of fipronil that would have little impact on the other species.
We propose a color video generation method for spatio-temporal high-resolution video imaging in dark conditions. The proposed method consists of two steps. First, RGB-separated video sequences with different spatio-temporal resolution sets are captured to increase the amount of captured light. Second, a high spatiotemporal resolution color video is reconstructed from those input video sequences in the regularization framework. We show the advantages of our method using a prototype camera system and simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.