Direct printing of functional electronic materials may provide a new route to low-cost fabrication of integrated circuits. However, to be useful it must allow continuous manufacturing of all circuit components by successive solution deposition and printing steps in the same environment. We demonstrate direct inkjet printing of complete transistor circuits, including via-hole interconnections based on solution-processed polymer conductors, insulators, and self-organizing semiconductors. We show that the use of substrate surface energy patterning to direct the flow of water-based conducting polymer inkjet droplets enables high-resolution definition of practical channel lengths of 5 micrometers. High mobilities of 0.02 square centimeters per volt second and on-off current switching ratios of 10(5) were achieved.
Very high-mobility organic transistors are fabricated with purified rubrene single crystals and high-density organosilane self-assembled monolayers. The interface with minimized surface levels allows carriers to distribute deep into the crystals by more than a few molecular layers under weak gate electric fields, so that the inner channel plays a significant part in the transfer performance. With the in-crystal carriers less affected by scattering mechanisms at the interface, the maximum transistor mobility reaches 18cm2∕Vs and the contact-free intrinsic mobility turned out to be 40cm2∕Vs as the result of four-terminal measurement. These are the highest values ever reported for organic transistors.
All‐polymer thin film transistor (TFT) circuits with via‐holes and resistors have been fabricated by an inkjet‐printing technique. Solvent drops deposited onto an insulating polymer by the inkjet technique are found to form a crater‐like hole (see Figure), and the hole can act as a via‐hole for a vertical interconnection. With this technique simple integrated circuits, such as inverters, can be created.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.