ONO-5334, a selective inhibitor of cathepsin K, is a potential new treatment for osteoporosis. The objectives of this study were to (1) develop population pharmacokinetic-pharmacodynamic (PK-PD) models for ONO-5334 using dose-ascending data from healthy postmenopausal females, (2) examine comparability of PK and/or PD profile between Caucasian and Japanese, and (3) compare PK-PD profile between immediate release tablet (IRT) and sustained release tablet (SRT). The population PK-PD models were developed for each formulation for post-dose levels of bone resorption markers (serum CTX and NTX). The data were provided from 4 phase 1 studies with total of 201 Caucasian and 94 Japanese subjects. Plasma concentrations of ONO-5334 and bone resorption markers were thoroughly evaluated in those studies. An indirect response model described relationships between bone resorption markers and plasma concentrations of ONO-5334. There was no significant difference in PK and pharmacodynamic potency (IC50 ) between Caucasian and Japanese. Based on the developed model, serum CTX and NTX after administration of ONO-5334 IRT or SRT were simulated, and the results showed that ONO-5334 SRT would provide comparable PD effect on bone resorption markers with lower dose relative to IRT.
ONO-5334, a selective inhibitor of cathepsin K, is a potential new treatment for osteoporosis. The objectives of this modeling study were to (1) develop exposure-response (E-R) models to relate ONO-5334 exposure to bone mineral density (BMD), (2) predict BMD responses to various doses of ONO-5334 for both immediate release tablet (IRT) and sustained release tablet (SRT) formulations where only BMD response after administration of IRT had been studied to date, (3) inform selection of appropriate formulation/dose using simulation for future clinical trials. A population pharmacokinetic (PK) model was developed to simultaneously analyze data for both IRT and SRT. The exposure metrics at steady state were estimated by post hoc Bayesian prediction using the final population PK model. E-R models were developed using dose-ranging data with only IRT from postmenopausal females with osteoporosis. Based on the developed model, lumbar spine and total hip BMD after administration of ONO-5334 SRT as well as IRT were simulated. The simulation results showed that ONO-5334 SRT should provide comparable BMD responses at a lower dose relative to IRT (a finding consistent with the results from a previous population PK-PD modeling study with bone resorption markers).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.