Enhanced fluorescence detection of metal ions was realized in a system consisting of a fluorescent 2,2'-bipyridine (BPy) receptor and light-harvesting periodic mesoporous organosilica (PMO). The fluorescent BPy receptor with two silyl groups was synthesized and covalently attached to the pore walls of biphenyl (Bp)-bridged PMO powder. The fluorescence intensity from the BPy receptor was significantly enhanced by the light-harvesting property of Bp-PMO, that is, the energy funneling into the BPy receptor from a large number of Bp groups in the PMO framework which absorbed UV light effectively. The enhanced emission of the BPy receptor was quenched upon the addition of a low concentration of Cu(2+) (0.15-1.2×10(-6) M), resulting in the sensitive detection of Cu(2+). Upon titration of Zn(2+) (0.3-6.0×10(-6) M), the fluorescence excitation spectrum was systematically changed with an isosbestic point at 375 nm through 1:1 complexation of BPy and Zn(2+) similar to that observed in BPy-based solutions, indicating almost complete preservation of the binding property of the BPy receptor despite covalent fixing on the solid surface. These results demonstrate that light-harvesting PMOs have great potential as supporting materials for enhanced fluorescence chemosensors.
We have discovered new Meerwein’s reagent-catalyzed sol–gel polycondensations, which provide highly condensed silica Q4 and biphenylylene silica T3 as amorphous gels with marginal silanols starting from TEOS and 4,4′-bis(triethoxysilyl)biphenyl (BTEBph), respectively. We propose a plausible pathway for this protocol with possible silyloxonium intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.