The expected information gain is an important quality criterion of Bayesian experimental designs, which measures how much the information entropy about uncertain quantity of interest θ is reduced on average by collecting relevant data Y . However, estimating the expected information gain has been considered computationally challenging since it is defined as a nested expectation with an outer expectation with respect to Y and an inner expectation with respect to θ. In fact, the standard, nested Monte Carlo method requires a total computational cost of O(ε −3 ) to achieve a root-mean-square accuracy of ε. In this paper we develop an efficient algorithm to estimate the expected information gain by applying a multilevel Monte Carlo (MLMC) method. To be precise, we introduce an antithetic MLMC estimator for the expected information gain and provide a sufficient condition on the data model under which the antithetic property of the MLMC estimator is well exploited such that optimal complexity of O(ε −2 ) is achieved. Furthermore, we discuss how to incorporate importance sampling techniques within the MLMC estimator to avoid arithmetic underflow. Numerical experiments show the considerable computational cost savings compared to the nested Monte Carlo method for a simple test case and a more realistic pharmacokinetic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.