We investigated the performance of artificial neural network (ANN)-based nonlinear equalizers for optical nonlinearity compensation by comparing activation functions, including a sigmoid function, ReLU, and Leaky ReLU. We compared the learning speeds and compensation performances by evaluating the resulting error vector magnitudes of the compensated signals. The performance was investigated using simulated 100-km optical fiber transmission of 10-GSymbol/s 16QAM signals. When the number of hidden-layer units in the ANN was small, the sigmoid function showed better performance in learning speed than ReLU and Leaky ReLU. This point is important because the number of ANN units has to be reduced in order to improve the computational complexity of the ANN-based nonlinear equalizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.