This paper elucidates the performance degradation and flow instability of an axial fan caused by the presence of disk-shaped obstacles upstream of the fan, such as wall surfaces. The increase in pressure loss and the decrease in shaft power coefficient due to inlet swirl flow, and the increase in pressure loss due to the outlet swirl flow, cause performance degradation. When the obstacle is closer to the fan, the strong swirl flow causes a negative pressure region between the fan and the obstacle, reversing the flow direction. This phenomenon is caused by the diffuser effect of the outward flow and the increase in pressure by acting as a multiblade centrifugal fan. At a low flow rate, a clockwise vortex is generated at the center of the obstacle and induces two counterclockwise rotating vortices. The vortices circumferentially separate the inward and outward flows along the fan's axis in a uniform manner, and their cores are circularly rotated by the clockwise vortex. These findings can contribute to the layout of fans under spatial restriction and suppression of flow instability due to obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.