Oxidized low density lipoprotein (Ox-LDL) can induce macrophage proliferation in vitro. To explore the mechanisms involved in this process, we reported that activation of protein kinase C (PKC) is involved in its signaling pathway (Matsumura, T., Sakai, M., Kobori, S., Biwa, T., Takemura, T., Matsuda, H., Hakamata, H., Horiuchi, S., and Shichiri, M. (1997) Arterioscler. Thromb. Vasc. Biol. 17, 3013-3020) and that expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) and its subsequent release in the culture medium are important (Biwa, T., Hakamata, H., Sakai, M., Miyazaki, A., Suzuki, H., Kodama, T., Shichiri, M., and Horiuchi, S. (1998) J. Biol. Chem. 273, 28305-28313). However, a recent study also demonstrated the involvement of phosphatidylinositol 3-kinase (PI3K) in this process. In the present study, we investigated the role of PKC and PI3K in Ox-LDL-induced macrophage proliferation. Ox-LDLinduced macrophage proliferation was inhibited by 90% by a PKC inhibitor, calphostin C, and 50% by a PI3K inhibitor, wortmannin. Ox-LDL-induced expression of GM-CSF and its subsequent release were inhibited by calphostin C but not by wortmannin, whereas recombinant GM-CSF-induced macrophage proliferation was inhibited by wortmannin by 50% but not by calphostin C. Ox-LDL activated PI3K at two time points (10 min and 4 h), and the activation at the second but not first point was significantly inhibited by calphostin C and anti-GM-CSF antibody. Our results suggest that PKC plays a role upstream in the signaling pathway to GM-CSF induction, whereas PI3K is involved, at least in part, downstream in the signaling pathway after GM-CSF induction.