While studies of the adaptor SH3BP2 have implicated a role in receptor-mediated signaling in mast cells and lymphocytes, they have failed to identify its function or explain why SH3BP2 missense mutations cause bone loss and inflammation in patients with cherubism. We demonstrate that Sh3bp2 "cherubism" mice exhibit trabecular bone loss, TNF-alpha-dependent systemic inflammation, and cortical bone erosion. The mutant phenotype is lymphocyte independent and can be transferred to mice carrying wild-type Sh3bp2 alleles through mutant fetal liver cells. Mutant myeloid cells show increased responses to M-CSF and RANKL stimulation, and, through mechanisms of increased ERK 1/2 and SYK phosphorylation/activation, they form macrophages that express high levels of TNF-alpha and osteoclasts that are unusually large. M-CSF and RANKL stimulation of myeloid cells that overexpress wild-type SH3BP2 results in similar large osteoclasts. This indicates that the mutant phenotype reflects gain of SH3BP2 function and suggests that SH3BP2 is a critical regulator of myeloid cell responses to M-CSF and RANKL stimulation.
IntroductionCoronavirus disease 2019 (COVID-19) is a new viral disease. Uncontrolled inflammation called “cytokine storm” is reported to contribute to disease pathogenesis as well as sepsis. We aimed to identify cytokines related to the pathogenesis of COVID-19 through a proteomics analysis of 1463 plasma proteins, validate these cytokines, and compare them with sepsis.Materials and MethodsIn a derivation cohort of 306 patients with COVID-19, 1463 unique plasma proteins were measured on days 1, 4, and 8. Cytokines associated with disease severity and prognosis were derived. In a validation cohort of 62 COVID-19 patients and 38 sepsis patients treated in the intensive care unit [ICU], these derived cytokines were measured on days 1 (day of ICU admission), 2-3, and 6-8 (maximum: 3 time points/patient). Derived cytokines were compared with healthy controls and between COVID-19 and sepsis patients, and the associations with prognosis were evaluated. The time to wean off mechanical ventilation (MV) was evaluated only for COVID-19.ResultsIL-6, amphiregulin, and growth differentiation factor (GDF)-15 were associated with disease severity and prognosis in the derivation cohort. In the validation cohort, IL-6 and GDF-15 were elevated in COVID-19 and sepsis on day 1, and the levels of these cytokines were higher in sepsis than in COVID-19. IL-6 and GDF-15 were associated with prognosis in sepsis. Cox proportional hazards model with time as a dependent covariate showed a significant relationship between plasma GDF-15 level and time to wean off MV (hazard ratio, 0.549 [95% confidence level, 0.382–0.789]). The GDF-15 level at ICU admission predicted late recovery.ConclusionGDF-15 and IL-6 derived from proteomics analysis were related with disease severity of COVID-19. Their values were higher in sepsis than in COVID-19 and were associated with prognosis in sepsis. In COVID-19 patients treated in the ICU, GDF-15 was associated with the time to wean off MV and better predicted late recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.