OBJECTIVE In this paper, the authors set out to identify the angiographic features of moyamoya disease with posterior hemorrhage, which is a strong predictor of rebleeding. METHODS This cross-sectional study used the data set of the Japan Adult Moyamoya Trial (clinical trial registration no.: C000000166 [ www.umin.ac.jp/ctr/index.htm ]). The panel designed the ancillary measurement of angiography at onset, classifying the collateral vessels into 3 subtypes: lenticulostriate anastomosis, thalamic anastomosis, and choroidal anastomosis. The association between each collateral and the hemorrhage site (anterior vs posterior) was assessed in the hemorrhagic hemisphere by using multivariate adjustment for potential confounders, including age, sex, and involvement of the posterior cerebral artery (PCA). The association was confirmed through topographical analysis of bleeding points. RESULTS Among the 80 participants, 75 hemorrhagic hemispheres of 75 patients were analyzed. Lenticulostriate anastomosis was detected in 21 (28.0%) hemorrhagic hemispheres, thalamic anastomosis in 22 (29.3%), and choroidal anastomosis in 35 (46.7%). Choroidal anastomosis was a factor associated with posterior hemorrhage (OR 2.77 [95% CI 1.08-7.10], p = 0.034) and remained statistically significant after the multivariate adjustment (OR 2.66 [95% CI 1.00-7.07], p = 0.049). PCA involvement was also associated with posterior hemorrhage in both univariate and multivariate analyses. Topographical analysis revealed good correspondence between bleeding points associated with positive choroidal anastomosis and the anatomical distribution of the choroidal arteries, including the thalamus and the wall of the atrium. CONCLUSIONS Choroidal anastomosis and PCA involvement are characteristic of posterior hemorrhage in moyamoya disease. Choroidal anastomosis might be considered a potential source of posterior hemorrhage at high risk of rebleeding.
The objective of this study is to review surgical anatomy of the trigeminal nerve. We also demonstrate some pictures involving the trigeminal nerve and its surrounding connective and neurovascular structures. Ten adult cadaveric heads were studied, using a magnification ranging from 3× to 40×, after perfusion of the arteries and veins with colored latex. The trigeminal nerve is the largest and most complex of the cranial nerves. It serves as a major conduit of sensory input from the face and provides motor innervation to the muscles of mastication. Because of its size and complexity, it is essential to have thorough knowledge of the nerve before diagnoses and treatment of the pathologic processes in the orofacial, temporomandibular, infratemporal, and pterygopalatine areas. The trigeminal nerve is encountered with imaging or surgery of the skull base surgery. Thus, a comprehensive knowledge of the anatomy of the trigeminal nerve is crucial for performing the surgical procedures without significant complication.
The objective of this study is to clearly and precisely describe the topography and contents of the infratemporal fossa. Ten formalin-fixed, adult cadaveric specimens were studied. Twenty infratemporal fossa were dissected and examined using micro-operative techniques with magnifications of 3-40×. Information was obtained about the inter-relationships of the contents of the infratemporal fossa. The infratemporal fossa lies at the boundary of the head and neck, and the intracranial cavity. It is surrounded by the maxillary sinus anteriorly, the mandible laterally, the pterygoid process anteromedially, and the parapharyngeal space posteromedially. It contains the maxillary artery and its branches, the pterygoid muscles, the mandibular nerve, and the pterygoid venous plexus. The course and the anatomic variation of the maxillary artery and the branches of the mandibular nerve were demonstrated. The three-dimensional (3D) relationships between the important bony landmarks and the neurovascular bundles of the infratemporal fossa were also shown. The skull base anatomy of the infratemporal fossa is complex, requiring neurosurgeons and head and neck surgeons to have a precise knowledge of 3D details of the topography and contents of the region. A detailed 3D anatomic knowledge is mandatory to manage benign or malignant lesions involving the infratemporal fossa without significant postoperative complications.
The purpose of the present study was to elucidate the expression and regulation of the L-cystine transporter, system x(c) (-), in Müller cells. In this study, newly developed conditionally immortalized rat Müller cell lines (TR-MUL) from transgenic rats harboring the temperature-sensitive SV 40 large T-antigen gene were used as an in vitro model. TR-MUL cells express large T-antigen and grow well at 33 degrees C with a doubling time of 30 h, but do not grow at 39 degrees C. TR-MUL cells express typical Müller cell markers such as S-100, glutamine synthetase, and EAAT1/GLAST, whereas EAAT2/GLT-1 and EAAT5 are not detected. TR-MUL cells also exhibit little or no expression of glial fibrillary acidic protein. We found that TR-MUL5 cells exhibited [(14)C]L-cystine uptake activity and expressed xCT and 4F2hc, which involve system x(c) (-). The uptake of [(14)C]L-cystine was significantly inhibited by L-glutamic acid and L-aspartic acid, whereas L-leucine had no effect. Following diethyl maleate (DEM) treatment, the glutathione concentration in TR-MUL5 cells was reduced in the first 24 h, then gradually recovered for more than 24 h. The L-cystine uptake rate and the xCT expression level in TR-MUL5 cells were enhanced by DEM treatment. In contrast, the 4F2hc expression level was unchanged. In conclusion, TR-MUL cells have the properties of Müller cells and exhibit system x(c) (-)-mediated L-cystine uptake activity. The oxidative stress conditions following DEM treatment activate L-cystine transport in TR-MUL cells due to the enhanced transcription of the xCT gene.
The transclival approach can be carefully tailored to expose focal lesions in the anterior part of the posterior fossa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.