Nucleoside modification has been studied in unfractionated tRNA from 11 thermophilic archaea (archaebacteria), including phylogenetically diverse representatives of thermophilic methanogens and sulfur-metabolizing hyperthermophiles which grow optimafly in the temperature range of 56 (Thermoplasma acidophilum) to 105°C (Pyrodictium occultum), and for comparison from the most thermophilic bacterium (eubacterium) known, Thermnotoga narilima (80WC). Nine nucleosides are found to be unique to the archaea, six of which are structurally novel in being modified both in the base and by methylation in ribose and occur primarily in tRNA from the extreme thermophiles in the Crenarchaeota of the archaeal phylogenetic tree. 2-Thiothymine occurs in tRNA from Thermococcus sp., and constitutes the only known occurrence of the thymine moiety in archaeal RNA, in contrast to its near-ubiquitous presence in tRNA from bacteria and eukarya. A total of 33 modified nucleosides are rigorously characterized in archaeal tRNA in the present study, demonstrating that the structural range of posttranscriptional modifications in archaeal tRNA is more extensive than previously known. From a phylogenetic standpoint, certain tRNA modifications occur in the archaea which are otherwise unique to either the bacterial or eukaryal domain, although the overall patterns of modification are more typical of eukaryotes than bacteria.Posttranscriptional processing of tRNA produces a variety of structurally modified nucleosides, some of which have been shown to be associated with a range of biological functions, including maintenance of translational fidelity and efficiency, codon usage, tRNA-protein interactions, and adaptation to cellular stress (9). More than 75 different nucleotides are presently known in tRNA from all sources, with modifications occurring mostly in the base and less commonly by methylation at 0-2' in ribose. Both the chemical nature and sequence locations of individual modifications are highly selective (for reviews, see references 9, 19, and 32), with numerous distinct differences exhibited among the three primary phylogenetic domains, Archaea, Bacteria, and Eucarya (formerly termed archaebacteria, eubacteria, and eukaryotes, respectively [53]). Knowledge of tRNA modification in thermophiles is important as an initial step in understanding structure-stability relationships in the nucleic acids of these remarkable organisms, which grow optimally around the boiling point of water (43), and in identifying domain-or kingdom-specific nucleoside modifications which may serve as phylogenetic markers. Additionally, knowledge of the distributions of modified nucleosides will be useful in later sequencing studies, particularly in avoiding misidentifications when structurally new nucleosides are encountered.Among archaeal microorganisms, tRNA from Halobacterium volcanji has been the most extensively studied (18,20),
In order to further understand the structural role of the modified nucleoside dihydrouridine in RNA the solution conformations of Dp and ApDpA were analyzed by one- and two-dimensional proton NRM spectroscopy and compared with those of the related uridine-containing compounds. The analyses indicate that dihydrouridine significantly destabilizes the C3'-endo sugar conformation associated with base stacked, ordered, A-type helical RNA. Equilibrium constants (Keq = [C2'-endo]/[C3'-endo]) for C2'-endo-C3'-endo interconversion at 25 degrees C for Dp, the 5'-terminal A of ApDpA and D in ApDpA are 2.08, 1.35 and 10.8 respectively. Stabilization of the C2'-endo form was shown to be enhanced at low temperature, indicating that C2'-endo is the thermodynamically favored conformation for dihydrouridine. DeltaH values show that for Dp the C2'-endo sugar conformation is stabilized by 1.5 kcal/mol compared with Up. This effect is amplified for D in the oligonucleotide ApDpA and propagated to the 5'-neighboring A, with stabilization of the C2'-endo form by 5.3 kcal/mol for D and 3.6 kcal/mol for the 5'-terminal A. Post-transcriptional formation of dihydrouridine therefore represents a biological strategy opposite in effect to ribose methylation, 2-thiolation or pseudouridylation, all of which enhance regional stability through stabilization of the C3'-endo conformer. Dihydrouridine effectively promotes the C2'-endo sugar conformation, allowing for greater conformational flexibility and dynamic motion in regions of RNA where tertiary interactions and loop formation must be simultaneously accommodated.
Methionine tRNA was purified from bovine liver mitochondria, and its nucleotide sequence was determined. The tRNA possesses only three posttranscriptionally modified nucleosides, two pseudouridines in the anticodon and T stems and a previously unknown nucleoside specified by the gene sequence as cytidine, in the first position of the anticodon. Structure analysis of the anticodon nucleoside by mass spectrometry revealed a molecular mass 28 Da greater than that of cytidine, and unmodified ribose, with substitution at C-5 implied by hydrogen-deuterium exchange experiments. Proton NMR of the intact tRNA showed presence of a formyl moiety, thus leading to the candidate structure 5-formylcytidine (f5C), not a previously known compound. The structure assignment was confirmed by chemical synthesis and comparison of data from combined HPLC/mass spectrometry and proton NMR for the natural and synthetic nucleosides. The potential function of f5C in the tRNA(Met) anticodon is discussed with regard to codon-anticodon interactions.
Archaeosine is a novel derivative of 7-deazaguanosine found in transfer RNAs of most organisms exclusively in the archaeal phylogenetic lineage and is present in the D-loop at position 15. We show that this modification is formed by a posttranscriptional base replacement reaction, catalyzed by a new tRNA-guanine transglycosylase (TGT), which has been isolated from Haloferax volcanii and purified nearly to homogeneity. The molecular weight of the enzyme was estimated to be 78 kDa by SDS-gel electrophoresis. The enzyme can insert free 7-cyano-7-deazaguanine (preQ0 base) in vitro at position 15 of an H. volcanii tRNA T7 transcript, replacing the guanine originally located at that position without breakage of the phosphodiester backbone. Since archaeosine base and 7-aminomethyl-7-deazaguanine (preQ1 base) were not incorporated into tRNA by this enzyme, preQ0 base appears to be the actual substrate for the TGT of H. volcanii, a conclusion supported by characterization of preQ0 base in an acid-soluble extract of H. volcanii cells. Thus, this novel TGT in H. volcanii is a key enzyme for the biosynthetic pathway leading to archaeosine in archaeal tRNAs.
Mass spectrometry-based methods have been used to study post-transcriptional modification in the 1900-1974 nt segment of domain IV in 23S rRNA of Escherichia coli, a region which interacts with domain V in forming the three- dimensional structure of the peptidyl transferase center within the ribosome. A nucleoside constituent of M r 258 (U*)which occurs at position 1915, within the highly modified oligonucleotide sequence 1911-psiAACU*Apsi-1917, was characterized as 3-methylpseudouridine (m3psi). The assignment was confirmed by chemical synthesis of m3psi and comparison with the natural nucleoside by liquid chromatography-mass spectrometry. 3-Methylpseudouridine is previously unknown in nature and is the only known derivative of the common modified nucleoside pseudouridine thus far found in bacterial rRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.