Centromeres contain specialized chromatin that includes the centromere-specific histone H3 variant, spCENP-A/Cnp1. Here we report identification of five fission yeast centromere proteins, Mis14-18. Mis14 is recruited to kinetochores independently of CENP-A, and, conversely, CENP-A does not require Mis14 to associate with centromeres. In contrast, Mis15, Mis16 (strong similarity with human RbAp48 and RbAp46), Mis17, and Mis18 are all part of the CENP-A recruitment pathway. Mis15 and Mis17 form an evolutionarily conserved complex that also includes Mis6. Mis16 and Mis18 form a complex and maintain the deacetylated state of histones specifically in the central core of centromeres. Mis16 and Mis18 are the most upstream factors in kinetochore assembly as they can associate with kinetochores in all kinetochore mutants except for mis18 and mis16, respectively. RNAi knockdown in human cells shows that Mis16 function is conserved as RbAp48 and RbAp46 are both required for localization of human CENP-A.
The centromere is the chromosomal site that joins to microtubules during mitosis for proper segregation. Determining the location of a centromere-specific histone H3 called CENP-A at the centromere is vital for understanding centromere structure and function. Here, we report the identification of three human proteins essential for centromere/kinetochore structure and function, hMis18alpha, hMis18beta, and M18BP1, the complex of which is accumulated specifically at the telophase-G1 centromere. We provide evidence that such centromeric localization of hMis18 is essential for the subsequent recruitment of de novo-synthesized CENP-A. If any of the three is knocked down by RNAi, centromere recruitment of newly synthesized CENP-A is rapidly abolished, followed by defects such as misaligned chromosomes, anaphase missegregation, and interphase micronuclei. Tricostatin A, an inhibitor to histone deacetylase, suppresses the loss of CENP-A recruitment to centromeres in hMis18alpha RNAi cells. Telophase centromere chromatin may be primed or licensed by the hMis18 complex and RbAp46/48 to recruit CENP-A through regulating the acetylation status in the centromere.
Nutrients are essential for cell growth and division. Screening of Schizosaccharomyces pombe temperature-sensitive strains led to the isolation of a nutrient-insensitive mutant, tor2-287 . This mutant produces a nitrogen starvation-induced arrest phenotype in rich media, fails to recover from the arrest, and is hypersensitive to rapamycin. The L2048S substitution mutation in the catalytic domain in close proximity to the adenine base of ATP is unique as it is the sole known genetic cause of rapamycin hypersensitivity. Localization of Tor2 was speckled in the vegetative cytoplasm, and both speckled and membranous in the arrested cell cytoplasm. Using mass spectroscopic analysis, we identified six subunits (Tco89, Bit61, Toc1, Tel2, Tti1 and Cka1) that, in addition to the six previously identified subunits (Tor1, Tor2, Mip1/Raptor, Ste20/Rictor, Sin1/ Avo1 and Wat1/Lst8), comprise the TOR complexes (TORCs). All of the subunits so far examined are multiply phosphorylated. Tel2 bound to Tti1 interacts with various phosphatidyl inositol kinase (PIK)-related kinases including Tra1, Tra2 and Rad3, as well as Tor1 and Tor2. Schizosaccharomyces pombe TORCs should thus be functionally redundant and might be broadly regulated through different subunits that are either common or specific to the two TORCs, or even common to various PIK-related kinases. Functional redundancy of the TORCs may explain the rapamycin hypersensitivity of tor2-287 .
Summary Mis16 and Mis18 are subunits of a protein complex required for incorporation of the histone H3 variant CenH3 (Cnp1/CENP-A) into centromeric chromatin in Schizosaccharomyces pombe and mammals. How the Mis16-Mis18 complex performs this function is unknown. Here we report that the Mis16-Mis18 complex is required for centromere localization of Scm3Sp, a Cnp1-binding protein related to Saccharomyces cerevisiae Scm3. Scm3Sp is required for centromeric localization of Cnp1, whilst Scm3Sp localizes at centromeres independently of Cnp1. Like the Mis16-Mis18 complex but unlike Cnp1, Scm3Sp dissociates from centromeres during mitosis. Inactivation of Scm3Sp or Mis18 increases centromere localization of histones H3 and H2A/H2B, which are largely absent from centromeres in wild type cells. Whereas S. cerevisiae Scm3 is proposed to replace histone H2A/H2B in centromeric nucleosomes, the dynamic behavior of S. pombe Scm3 suggests that it acts as a Cnp1 assembly/maintenance factor that directly mediates the stable deposition of Cnp1 into centromeric chromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.