Abstract-Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is an important contributor to population morbidity and mortality. An arrhythmia that is particularly common in the elderly, AF is growing in prevalence with the aging of the population. Our understanding of the basic mechanisms that govern AF occurrence and persistence has been increasing rapidly. This article reviews the basic pathophysiology of AF over a broad range of levels, touching on the tissue mechanisms that maintain the arrhythmia, the relationship between clinical presentation and basic mechanisms, ion channel and transporter abnormalities that lead to ectopic impulse formation, basic models and tissue determinants of reentry, ion channel determinants of reentry, the nature and roles of electric and structural remodeling, autonomic neural components, anatomic factors, interactions between atrial and ventricular functional consequences of AF, and the basic determinants of atrial thromboembolism. We then review the potential implications of the basic pathophysiology of the arrhythmia for its management. We first discuss consequences for improved rhythm control pharmacotherapy: targeting underlying conditions, new atrium-selective drug targets, new targets for focal ectopic source suppression, and upstream therapy aiming to prevent remodeling. We then review the implications of basic mechanistic considerations for rate control therapy, AF ablation, and the prevention of thromboembolic events. We conclude with some thoughts about the future of translational research related to AF mechanisms. (Circulation. 2011; 124:2264-2274.)Key Words: antiarrhythmia agents Ⅲ arrhythmia Ⅲ calcium Ⅲ electrophysiology Ⅲ reentry A trial fibrillation (AF), the most common sustained cardiac arrhythmia, is becoming progressively more prevalent with population aging. 1 Enormous advances in the understanding of AF pathophysiology have occurred over the past 20 years. 2,3 The present article, part of a thematic series in Circulation on AF, provides a broad overview of AF pathophysiology and the potential implications for AF management. In addition, it furnishes background information on basic mechanisms relevant to other articles in the series dealing with AF epidemiology and genetics, stroke prevention, rate control therapy, sinus rhythm maintenance pharmacotherapy, management in structural heart disease, and catheter ablation. For more comprehensive treatment of specific mechanisms, the reader is referred to detailed review articles. [2][3][4][5]
Background Fibroblast proliferation and differentiation are central in atrial fibrillation (AF)–promoting remodeling. Here, we investigated fibroblast regulation by Ca2+-permeable transient receptor potential canonical-3 (TRPC3) channels. Methods and Results Freshly isolated rat cardiac fibroblasts abundantly expressed TRPC3 and had appreciable nonselective cation currents (INSC) sensitive to a selective TPRC3 channel blocker, pyrazole-3 (3 μmol/L). Pyrazole-3 suppressed angiotensin II-induced Ca2+ influx, proliferation, and α-smooth muscle actin protein expression in fibroblasts. Ca2+ removal and TRPC3 blockade suppressed extracellular signal-regulated kinase phosphorylation, and extracellular signal-regulated kinase phosphorylation inhibition reduced fibroblast proliferation. TRPC3 expression was upregulated in atria from AF patients, goats with electrically maintained AF, and dogs with tachypacing-induced heart failure. TRPC3 knockdown (based on short hairpin RNA [shRNA]) decreased canine atrial fibroblast proliferation. In left atrial fibroblasts freshly isolated from dogs kept in AF for 1 week by atrial tachypacing, TRPC3 protein expression, currents, extracellular signal-regulated kinase phosphorylation, and extracellular matrix gene expression were all significantly increased. In cultured left atrial fibroblasts from AF dogs, proliferation rates, α-smooth muscle actin expression, and extracellular signal-regulated kinase phosphorylation were increased and were suppressed by pyrazole-3. MicroRNA-26 was downregulated in canine AF atria; experimental microRNA-26 knockdown reproduced AF-induced TRPC3 upregulation and fibroblast activation. MicroRNA-26 has NFAT (nuclear factor of activated T cells) binding sites in the 5′ promoter region. NFAT activation increased in AF fibroblasts, and NFAT negatively regulated microRNA-26 transcription. In vivo pyrazole-3 administration suppressed AF while decreasing fibroblast proliferation and extracellular matrix gene expression. Conclusions TRPC3 channels regulate cardiac fibroblast proliferation and differentiation, likely by controlling the Ca2+ influx that activates extracellular signal-regulated kinase signaling. AF increases TRPC3 channel expression by causing NFAT-mediated downregulation of microRNA-26 and causes TRPC3-dependent enhancement of fibroblast proliferation and differentiation. In vivo, TRPC3 blockade prevents AF substrate development in a dog model of electrically maintained AF. TRPC3 likely plays an important role in AF by promoting fibroblast pathophysiology and is a novel potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.