MicroRNAs (miRNAs) are effective post-transcriptional regulators of gene expression and are important in many biological processes. Although the oncogenic and tumor suppressive functions of several miRNAs have been characterized, the role of miRNAs in mediating tumor invasion and migration remains largely unexplored. Recently, miR-10b was identified as an miRNA highly expressed in metastatic breast cancer, promoting cell migration and invasion. Here, we performed real-time reverse transcriptase polymerase chain reaction (RT-PCR) assays on 43 glioma samples (17 glioblastoma, 6 anaplastic astrocytoma, 10 low-grade astrocytoma, 6 oligodendroglioma and 4 ependymoma) and 6 glioma cell lines. We found that miR-10b expression was upregulated in all glioma samples compared to non-neoplastic brain tissues. The expression levels of miR-10b were associated with higher grade glioma. In addition, mRNA expressions of RhoC and urokinasetype plasminogen activator receptor (uPAR), which were thought to be regulated by miR-10b via HOXD10, were statistically significantly correlated with the expression of miR-10b (p < 0.001, p 5 0.001, respectively). Also, protein expression levels of RhoC and uPAR were associated with expression levels of miR-10b (p 5 0.009, p 5 0.014, respectively). Finally, multifocal lesions on enhanced MRI of 7 malignant gliomas were associated with higher expression levels of miR-10b (p 5 0.02). Our data indicated that miR-10b might play some role in the invasion of glioma cells. ' 2009 UICC
A low concentration (10 nM) of adenosine potentiated hippocampal neuronal activity via A(2a) adenosine receptors without affecting presynaptic glutamate release or postsynaptic glutamatergic conductance. Adenosine inhibited glutamate uptake through the glial glutamate transporter, GLT-1, via A(2a) adenosine receptors. In addition, adenosine stimulated GLT-1-independent glutamate release from astrocytes, possibly in response to a rise in intracellular Ca(2+), via A(2a) adenosine receptors involving PKA activation. Those adenosine actions could lead to an increase in synaptic glutamate concentrations responsible for the potentiation of hippocampal neuronal activity. The results of the present study thus represent a novel neuromodulatory pathway with a glial contribution, bearing both inhibition of GLT-1 function and stimulation of glial glutamate release, as mediated via A(2a) adenosine receptors.
We demonstrate a single shot two-dimensional grating-based X-ray phase-contrast imaging using a synchrotron radiation source. A checkerboard designed phase grating for π phase modulation at 17 keV and 35 keV, and a lattice-shaped amplitude grating with a high aspect ratio to shield X-rays up to 35 keV were fabricated. A Fourier analysis of Moiré fringe generated by the gratings was introduced to obtain the two-dimensional differential phase-contrast image with a single exposure. The results show that soft tissues and cartilages of a chicken wing sample are clearly seen with differential phase variation in two-dimensional directions. Using this method not only the whole of an object but also only an inner part of the object can be imaged.
Background and Purpose-We, for the first time, performed in vivo x-ray angiography in the mouse brain using SPring-8, a third-generation synchrotron radiation facility. Methods-A thin PE-50 tube was placed in the unilateral external carotid artery in adult male C57BL/6J mice. While maintaining the blood flow in the internal carotid artery, 33 L of contrast agent was injected and then selective angiography of the hemisphere was performed. Results-The average diameters of cerebral artery were as follows: 142.5Ϯ7.90 m in middle cerebral artery, 138.3Ϯ9.35 m in anterior cerebral artery, 120.5Ϯ5.53 m in posterior cerebral artery, and 162.6Ϯ10.87 m in internal carotid artery (nϭ5). To demonstrate the changes in diameter, we induced hypercapnia and detected the dilatation of the vessels between 121% and 124% of the original diameters (nϭ5). We also repeated angiography in the mice before and after intracarotid injection of vasodilatation drugs papaverine hydrochloride, ATP disodium, and fasudil hydrochloride hydrate and demonstrated the chronological changes in the diameters in each artery at 1, 5, 15, and 30 minutes after injection (nϭ1 for each drug). Conclusions-Using only a minimum volume of the contrast agent, synchrotron radiation enables us to study x-ray angiography in the mouse brain. The morphology of the vessels can be clearly observed under physiological conditions. The diameters and their changes can also be successfully studied in vivo. (Stroke. 2006;37:1856-1861.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.