First-order structural phase transitions are common in crystalline solids, whereas first-order liquid-liquid phase transitions (that is, transitions between two distinct liquid forms with different density and entropy) are exceedingly rare in pure substances. But recent theoretical and experimental studies have shown evidence for such a transition in several materials, including supercooled water and liquid carbon. Here we report an in situ X-ray diffraction observation of a liquid-liquid transition in phosphorus, involving an abrupt, pressure-induced structural change between two distinct liquid forms. In addition to a known form of liquid phosphorus--a molecular liquid comprising tetrahedral P4 molecules--we have found a polymeric form at pressures above 1 GPa. Changing the pressure results in a reversible transformation from the low-pressure molecular form into the high-pressure polymeric form. The transformation is sharp and rapid, occurring within a few minutes over a pressure range of less than 0.02 GPa. During the transformation, the two forms of liquid coexist. These features are strongly suggestive of a first-order liquid-liquid phase transition.
Nucleoside reverse transcriptase inhibitors (NRTIs) are mainstay therapeutics for HIV that block retrovirus replication. Alu (an endogenous retroelement that also requires reverse transcriptase for its life cycle)-derived RNAs activate P2X7 and the NLRP3 inflammasome to cause cell death of the retinal pigment epithelium (RPE) in geographic atrophy, a type of age-related macular degeneration. We found that NRTIs inhibit P2X7-mediated NLRP3 inflammasome activation independent of reverse transcriptase inhibition. Multiple approved and clinically relevant NRTIs prevented caspase-1 activation, the effector of the NLRP3 inflammasome, induced by Alu RNA. NRTIs were efficacious in mouse models of geographic atrophy, choroidal neovascularization, graft-versus-host disease (GVHD), and sterile liver inflammation. Our findings suggest that NRTIs are ripe for drug repurposing in P2X7-driven diseases.
Structural transformation between a dense molecular fluid and a polymeric liquid of phosphorus that occurred at about 1 gigapascal and 1000 degrees C was investigated by in situ x-ray radiography. When the low-pressure fluid was compressed, dark and round objects appeared in the radiograph. X-ray diffraction measurements confirmed that these objects were the highpressure liquid. The drops grew and eventually filled the sample space. Decompressing caused the reverse process. The macroscopic phase separation supported the existence of a first-order phase transition between two stable disordered phases besides the liquid-gas transition. X-ray absorption measurements revealed that the change in density at the transition corresponds to about 40% of the density of the high-pressure liquid.
Exposure to estrogenic endocrine disrupting chemicals (EDCs) induces a range of adverse effects, notably on reproduction and reproductive development. These responses are mediated via estrogen receptors (ERs). Different species of fish may show differences in their responsiveness to environmental estrogens but there is very limited understanding on the underlying mechanisms accounting for these differences. We used custom developed in vitro ERα reporter gene assays for nine fish species to analyze the ligand- and species-specificity for 12 environmental estrogens. Transcriptonal activities mediated by estradiol-17β (E2) were similar to only a 3-fold difference in ERα sensitivity between species. Diethylstilbestrol was the most potent estrogen (∼ 10-fold that of E2) in transactivating the fish ERαs, whereas equilin was about 1 order of magnitude less potent in all species compared to E2. Responses of the different fish ERαs to weaker environmental estrogens varied, and for some considerably. Medaka, stickleback, bluegill and guppy showed higher sensitivities to nonylphenol, octylphenol, bisphenol A and the DDT-metabolites compared with cyprinid ERαs. Triclosan had little or no transactivation of the fish ERαs. By constructing ERα chimeras in which the AF-containing domains were swapped between various fish species with contrasting responsiveness and subsequent exposure to different environmental estrogens. Our in vitro data indicate that the LBD plays a significant role in accounting for ligand sensitivity of ERα in different species. The differences seen in responsiveness to different estrogenic chemicals between species indicate environmental risk assessment for estrogens cannot necessarily be predicted for all fish by simply examining receptor activation for a few model fish species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.