Background and objectives Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for ,5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear.Design, setting, participants, & measurements We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport-related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records.Results The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte-related genes.Conclusions The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X-linked Alport syndrome in men. It may, thus, be difficult to make an accurate diagnosis of autosomal dominant Alport syndrome on the basis of clinical or pathologic findings. No modifier genes were identified among the known podocyte-related genes.
Purpose: Phenotypic overlap exists among type III Bartter syndrome (BS), Gitelman syndrome (GS), and pseudo-BS/GS (p-BS/ GS), which are clinically difficult to distinguish. We aimed to clarify the differences between these diseases, allowing accurate diagnosis based on their clinical features. Methods:A total of 163 patients with genetically defined type III BS (n = 30), GS (n = 90), and p-BS/GS (n = 43) were included. Age at diagnosis, sex, body mass index, estimated glomerular filtration rate, and serum and urine electrolyte concentrations were determined. Results:Patients with p-BS/GS were significantly older at diagnosis than those with type III BS and GS. Patients with p-BS/GS included a significantly higher percentage of women and had a lower body mass index and estimated glomerular filtration rate than did patients with GS. Although hypomagnesemia and hypocalciuria were predominant biochemical findings in patients with GS, 17 and 23% of patients with type III BS and p-BS/GS, respectively, also showed these abnormalities. Of patients with type III BS, GS, and p-BS/GS, 40, 12, and 63%, respectively, presented with chronic kidney disease.
Edema stemming from leaky blood vessels is common in eye diseases such as age-related macular degeneration and diabetic retinopathy. Whereas therapies targeting vascular endothelial growth factor A (VEGFA) can suppress leakage, side-effects include vascular rarefaction and geographic atrophy. By challenging mouse models representing different steps in VEGFA/VEGF receptor 2 (VEGFR2)-induced vascular permeability, we show that targeting signaling downstream of VEGFR2 pY949 limits vascular permeability in retinopathy induced by high oxygen or by laser-wounding. Although suppressed permeability is accompanied by reduced pathological neoangiogenesis in oxygen-induced retinopathy, similarly sized lesions leak less in mutant mice, separating regulation of permeability from angiogenesis. Strikingly, vascular endothelial (VE)-cadherin phosphorylation at the Y685, but not Y658, residue is reduced when VEGFR2 pY949 signaling is impaired. These findings support a mechanism whereby VE-cadherin Y685 phosphorylation is selectively associated with excessive vascular leakage. Therapeutically, targeting VEGFR2-regulated VE-cadherin phosphorylation could suppress edema while leaving other VEGFR2-dependent functions intact.
X-linked Alport syndrome is caused by mutations in the COL4A5 gene encoding the type IV collagen α5 chain (α5(IV)). Complete absence of α5(IV) in the renal basal membrane is considered a pathological characteristic in male patients; however, positive α5(IV) staining has been found in over 20% of patients. We retrospectively studied 52 genetically diagnosed male X-linked Alport syndrome patients to evaluate differences in clinical characteristics and renal outcomes between 15 α5(IV)-positive and 37 α5(IV)-negative patients. Thirteen patients in the α5(IV)-positive group had non-truncating mutations consisting of nine missense mutations, three in-frame deletions, and one splice-site mutation resulting in small in-frame deletions of transcripts. The remaining two showed somatic mutations with mosaicism. Missense mutations in the α5(IV)-positive group were more likely to be located before exon 25 compared with missense mutations in the α5(IV)-negative group. Furthermore, urinary protein levels were significantly lower and the age at onset of end-stage renal disease was significantly higher in the positive group than in the negative group. These results help to clarify the milder clinical manifestations and molecular characteristics of male X-linked Alport syndrome patients expressing the α5(IV) chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.