Elevations were observed in log P for Strat-M™ with an increase in the log Ko/w of the applied compounds, and similar results were observed with the human and hairless rat skins. A correlation was obtained in log P values between Strat-M™ and human or hairless rat skin. Furthermore, the diffusion and partition parameters of chemicals in Strat-M™ were similar to those in the excised human and rat skins. These results suggest that Strat-M™ could be used as an alternative to animal or human skin in permeation studies.
Ingredient concentration in skin can be precisely predicted using diffusion equations and partition coefficients through permeation experiments using a silicone membrane. The calculated in-skin concentration is useful for formulation studies of cosmetics and topical pharmaceuticals.
Topical formulations are not always suitable to deliver active ingredients to large areas of skin. Thus, in this study, we aimed to develop an oral formulation for skin tissue targeting with a high bioavailability using liquid crystal (LC) dispersions comprising cubosomes of a mal-absorptive model compound, p-amino benzoic acid (PABA), which is an active element in cosmeceuticals, dietary supplements and skin disorder medicines. The bioavailability and skin concentration of PABA were investigated after oral administration in rats. The effect of the remaining amount of the LC formulation in the stomach on the pharmacokinetic profiles of orally administered PABA was evaluated. The skin permeation and concentration of PABA were also investigated using an in vitro permeation experiment. As a result, the bioavailability of PABA was significantly improved by administration of PABA-LC formulations compared with PABA solution alone, although the effect was greatly influenced by the type of LC-forming lipids. The in vitro skin permeation study showed that the PABA concentration in the skin when applied from the dermis side was higher than when applied from the epidermis side. These findings suggested that oral administration advantageously supports skin targeting, and oral LC formulations could be a promising material in cosmeceutical, dietary and clinical fields.
Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics.
Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill’s equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of “3Rs” issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane) and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick’s second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.