OBJECTIVETo characterize the phenotypic changes of adipose tissue macrophages (ATMs) under different conditions of insulin sensitivity.RESEARCH DESIGN AND METHODSThe number and the expressions of marker genes for M1 and M2 macrophages from mouse epididymal fat tissue were analyzed using flow cytometry after the mice had been subjected to a high-fat diet (HFD) and pioglitazone treatment.RESULTSMost of the CD11c-positive M1 macrophages and the CD206-positive M2 macrophages in the epididymal fat tissue were clearly separated using flow cytometry. The M1 and M2 macrophages exhibited completely different gene expression patterns. Not only the numbers of M1 ATMs and the expression of M1 marker genes, such as tumor necrosis factor-α and monocyte chemoattractant protein-1, but also the M1-to-M2 ratio were increased by an HFD and decreased by subsequent pioglitazone treatment, suggesting the correlation with whole-body insulin sensitivity. We also found that the increased number of M2 ATMs after an HFD was associated with the upregulated expression of interleukin (IL)-10, an anti-inflammatory Th2 cytokine, in the adipocyte fraction as well as in adipose tissue. The systemic overexpression of IL-10 by an adenovirus vector increased the expression of M2 markers in adipose tissue.CONCLUSIONSM1 and M2 ATMs constitute different subsets of macrophages. Insulin resistance is associated with both the number of M1 macrophages and the M1-to-M2 ratio. The increased expression of IL-10 after an HFD might be involved in the increased recruitment of M2 macrophages.
Lumbar disc disease (LDD) is caused by degeneration of intervertebral discs of the lumbar spine. One of the most common musculoskeletal disorders, LDD has strong genetic determinants. Using a case-control association study, we identified a functional SNP (1184T --> C, resulting in the amino acid substitution I395T) in CILP, which encodes the cartilage intermediate layer protein, that acts as a modulator of LDD susceptibility. CILP was expressed abundantly in intervertebral discs, and its expression increased as disc degeneration progressed. CILP colocalized with TGF-beta1 in clustering chondrocytes and their territorial matrices in intervertebral discs. CILP inhibited TGF-beta1-mediated induction of cartilage matrix genes through direct interaction with TGF-beta1 and inhibition of TGF-beta1 signaling. The susceptibility-associated 1184C allele showed increased binding and inhibition of TGF-beta1. Therefore, we conclude that the extracellular matrix protein CILP regulates TGF-beta signaling and that this regulation has a crucial role in the etiology and pathogenesis of LDD. Our study also adds to the list of connective tissue diseases that are associated with TGF-beta.
Mesenchymal stromal cells (MSCs) in bone marrow are important for bone homeostasis. Although platelet-derived growth factor (PDGF) has been reported to be involved in osteogenic differentiation of MSCs, the role remains controversial and the network of PDGF signaling for MSCs has not been clarified. To clarify the underlying regulatory mechanism of MSC functions mediated by PDGF, we deleted the PDGF receptor (PDGFR) gene by Cre-loxP strategy and examined the role of PDGF in osteogenic differentiation of MSCs and fracture repair. In cultured MSCs, the mRNA expression of PDGF-A, -B, -C, and -D as well as PDGFR␣ and  was detected. Depletion of PDGFR in MSCs decreased the mitogenic and migratory responses and enhanced osteogenic differentiation as evaluated by increased alkaline phosphatase (ALP) activity and mRNA levels of ALP, osteocalcin (OCN), bone morphogenetic protein (BMP) 2, Runx2, and osterix in quantitative RT-PCR. PDGF-BB, but not PDGF-AA, inhibited osteogenic differentiation accompanied by decreased ALP activity and mRNA levels, except for BMP2. These effects of PDGF-BB were eliminated by depletion of PDGFR in MSCs except that PDGF-BB still suppressed osterix expression in PDGFR-depleted MSCs. Depletion of PDGFR significantly increased the ratio of woven bone to callus after fracture. From the combined analyses of PDGF stimulation and specific PDGFR gene deletion, we showed that PDGFR signaling distinctively induces proliferative and migratory responses but strongly inhibits osteogenic differentiation of MSCs. The effects of PDGFR␣ on the osteogenic differentiation were very subtle. PDGFR could represent an important target for guided tissue regeneration or tissue engineering of bone.
Previous investigations have demonstrated that green tea polyphenols and partially hydrolyzed guar gum as dietary fiber have antioxidative and hypolipidemic activity, respectively, supporting their reduction of risk factors in the course of diabetic nephropathy via a hypoglycemic effect and ameliorating the decline of renal function through their combined administration to rats with subtotal nephrectomy plus streptozotocin (STZ) injection. As a further study, we examined whether (Ϫ)-epigallocatechin 3-O-gallate (EGCg), the main polyphenolic compound, could ameliorate the development of diabetic nephropathy. Rats with subtotal nephrectomy plus STZ injection were orally administrated EGCg at doses of 25, 50, and 100 mg/kg body weight/day. After a 50-day administration period, EGCgtreated groups showed suppressed hyperglycemia, proteinuria, and lipid peroxidation, although there were only weak effects on the levels of serum creatinine and glycosylated protein. Furthermore, EGCg reduced renal advanced glycation endproduct accumulation and its related protein expression in the kidney cortex as well as associated pathological conditions. These results suggest that EGCg ameliorates glucose toxicity and renal injury, thus alleviating renal damage caused by abnormal glucose metabolism-associated oxidative stress involved in renal lesions of diabetic nephropathy.
Lumbar disc herniation (LDH), degeneration and herniation of the nucleus pulposus of the intervertebral disc (IVD) of the lumbar spine, is one of the most common musculoskeletal diseases. Its etiology and pathogenesis, however, remain unclear. Type XI collagen is important for cartilage collagen formation and for organization of the extracellular matrix. We identified an association between one of the type XI collagen genes, COL11A1, and LDH in Japanese populations. COL11A1, which encodes the alpha 1 chain of type XI collagen, was highly expressed in IVD, but its expression was decreased in the IVD of patients with LDH. The expression level was inversely correlated with the severity of disc degeneration. A single-nucleotide polymorphism (c.4603C-->T [rs1676486]) had the most significant association with LDH (P=3.3 x 10(-6)), and the transcript containing the disease-associated allele was decreased because of its decreased stability. These observations indicate that type XI collagen is critical for IVD metabolism and that its decrease is related to LDH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.