The intracellular calcium concentration ([Ca(2+)]) has important roles in the triggering of neurotransmitter release and the regulation of short-term plasticity (STP). Transmitter release is initiated by quite high concentrations within microdomains, while short-term facilitation is strongly influenced by the global buildup of "residual calcium." A global rise in [Ca(2+)] also accelerates the recruitment of release-ready vesicles, thereby controlling the degree of short-term depression (STD) during sustained activity, as well as the recovery of the vesicle pool in periods of rest. We survey data that lead us to propose two distinct roles of [Ca(2+)] in vesicle recruitment: one accelerating "molecular priming" (vesicle docking and the buildup of a release machinery), the other promoting the tight coupling between releasable vesicles and Ca(2+) channels. Such coupling is essential for rendering vesicles sensitive to short [Ca(2+)] transients, generated during action potentials.
In many synapses, depletion and recruitment of releasable synaptic vesicles contribute to use-dependent synaptic depression and recovery. Recently it has been shown that high-frequency presynaptic stimulation enhances recovery from depression, which may be mediated by Ca2+. We addressed this issue by measuring quantal release rates at the calyx of Held synapse and found that transmission is mediated by a heterogeneous population of vesicles, with one subset releasing rapidly and recovering slowly and another one releasing reluctantly and recovering rapidly. Ca2+ promotes refilling of the rapidly releasing synaptic vesicle pool and calmodulin inhibitors block this effect. We propose that calmodulin-dependent refilling supports recovery from synaptic depression during high-frequency trains in concert with rapid recovery of the slowly releasing vesicles.
The mechanism coupling exocytosis and endocytosis remains to be elucidated at central synapses. Here, we show that the mechanism linking these two processes is dependent on microdomain-[Ca2+](i) similar to that which triggers exocytosis, as well as the exocytotic protein synaptobrevin/VAMP. Furthermore, block of endocytosis has a limited, retrograde action on exocytosis, delaying recruitment of release-ready vesicles and enhancing short-term depression. This effect sets in so rapidly that it cannot be explained by the nonavailability of recycled vesicles. Rather, we postulate that perturbation of a step linking exocytosis and endocytosis temporarily prevents new vesicles from docking at specialized sites for exocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.