Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12. Intriguingly, in two families with a clinical diagnosis of BAFME in which no repeat expansions in SAMD12 were observed, we identified similar expansions of TTTCA and TTTTA repeats in introns of TNRC6A and RAPGEF2, indicating that expansions of the same repeat motifs are involved in the pathogenesis of BAFME regardless of the genes in which the expanded repeats are located. This discovery that expansions of noncoding repeats lead to neuronal dysfunction responsible for myoclonic tremor and epilepsy extends the understanding of diseases with such repeat expansion.
Benign adult familial myoclonic epilepsy is an autosomal dominant idiopathic epileptic syndrome characterized by adult-onset tremulous finger movement, myoclonus, epileptic seizures, and nonprogressive course. It was recently recognized in Japanese families. In this study, we report that the gene locus is assigned to the distal long arm of chromosome 8, by linkage analysis in a large Japanese kindred with a maximum two-point LOD score of 4.31 for D8S555 at recombination fraction of 0 (maximum multipoint LOD score of 5.42 for the interval between D8S555 and D8S1779). Analyses of recombinations place the locus within an 8-cM interval, between D8S1784 and D8S1694, in which three markers, D8S1830, D8S555, and D8S1779, show no recombination with the phenotypes. Although three other epilepsy-related loci on chromosome 8q have been recognized-one on chromosome 8q13-21 (familial febrile convulsion) and two others on chromosome 8q24 (KCNQ3 and childhood absence epilepsy)-the locus assigned here is distinct from these three epilepsy-related loci. This study establishes the presence of a new epilepsy-related locus on 8q23.3-q24.11.
Background and Aim It is necessary to establish universal methods for endoscopic diagnosis of Helicobacter pylori (HP) infection, such as computer‐aided diagnosis. In the present study, we propose a multistage diagnosis algorithm for HP infection. Methods The aims of this study are to: (i) to construct an interpretable automatic diagnostic system using a support vector machine for HP infection; and (ii) to compare the diagnosis capability of our artificial intelligence (AI) system with that of endoscopists. Presence of an HP infection determined through linked color imaging (LCI) was learned through machine learning. Trained classifiers automatically diagnosed HP‐positive and ‐negative patients examined using LCI. We retrospectively analyzed the new images from 105 consecutive patients; 42 were HP positive, 46 were post‐eradication, and 17 were uninfected. Five endoscopic images per case taken from different areas were read into the AI system, and used in the HP diagnosis. Results Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the diagnosis of HP infection using the AI system were 87.6%, 90.4%, 85.7%, 80.9%, and 93.1%, respectively. Accuracy of the AI system was higher than that of an inexperienced doctor, but there was no significant difference between the diagnosis of experienced physicians and the AI system. Conclusions The AI system can diagnose an HP infection with significant accuracy. There remains room for improvement, particularly for the diagnosis of post‐eradication patients. By learning more images and considering a diagnosis algorithm for post‐eradication patients, our new AI system will provide diagnostic support, particularly to inexperienced physicians.
Benign adult familial myoclonic epilepsy (BAFME), alternatively named familial adult myoclonic epilepsy 1/familial cortical myoclonic tremor with epilepsy 1 (FAME1/FCMTE1), is a hereditary epileptic syndrome characterized by autosomal dominant inheritance, adult-onset tremulous hand movement, myoclonus, infrequent epileptic seizure and non-progressive course without cerebellar ataxia and dementia. We previously reported evidence for linkage of BAFME to the region between D8S1784 and D8S1694 on chromosome 8q. Subsequently, other research groups reported mapping of the same clinical syndrome to different chromosomal loci, 2p and 5p, in Italian (FAME2/FCMTE2) and French (FAME3/FCMTE3) families, respectively. In this study, we performed a genome-wide linkage analysis using 10K single-nucleotide polymorphism arrays and additional microsatellite markers to reconfirm the BAFME-linked region. The BAFME-linked region was mapped to 7.16 Mb spanned by rs1898287 and rs2891799 on chromosomes 8q23.3-8q24.13 with a maximum two-point logarithm of odds score of 6.0 for the marker rs1021897. Sequence analysis and copy-number variant analysis of all 38 genes localized in the candidate region were performed, but no pathogenic mutation was identified. We conclude that the etiology of BAFME remains to be solved, and further genetic studies, which may require analysis in non-coding regions of a gene, introns or intergenic spacer regions, are necessary to reveal its unknown mutations.
We continue to explore the possibility that the graviton in two dimensions is related to a quadratic differential that appears in the anomalous contribution of the gravitational effective action for chiral fermions. A higher dimensional analogue of this field might exist as well. We improve the defining action for this diffeomorphism tensor field and establish a principle for how it interacts with other fields and with point particles in any dimension. All interactions are related to the action of the diffeomorphism group. We discuss possible interpretations of this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.