In compressed sensing magnetic resonance imaging (CS-MRI), undersampling of k-space is performed to achieve faster imaging. For this process, it is important to acquire data randomly, and an optimal random undersampling pattern is required. However, random undersampling is difficult in two-dimensional (2D) Cartesian sampling. In this study, the effect of random undersampling patterns on image reconstruction was clarified using phantom and in vivo MRI, and a sampling pattern relevant for 2D Cartesian sampling in CS-MRI is suggested. The precision of image restoration was estimated with various acceleration factors and extents for the fully sampled central region of k-space. The root-mean-square error, structural similarity index, and modulation transfer function were measured, and visual assessments were also performed. The undersampling pattern was shown to influence the precision of image restoration, and an optimal undersampling pattern should be used to improve image quality; therefore, we suggest that the ideal undersampling pattern in CS-MRI for 2D Cartesian sampling is one with a high extent for the fully sampled central region of k-space.
The proposed method is effective for reducing propagation of noise from transmission data to emission data without loss of the quantitative accuracy of the PET image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.