The present study attempted to clarify whether over-secretion of glucocorticoids in the serum caused by increased hypothalamus-pituitary-adrenal activity induces oxidative stress in the rat brain, and how the stress causes the emergence of cognitive deficits. When rats were subcutaneously injected with corticosterone, lipid hydroperoxides and protein carbonyls increased markedly in the hippocampus in association with a decrease in activity of antioxidative enzymes, such as superoxide dismutase, catalase and glutathione peroxidase. These results suggest that high-level corticosterone in the serum induces reactive oxygen species (ROS), leading to oxidative damage in the hippocampus. After administration of corticosterone to rats, glucose and superoxide levels in the serum increased markedly. Furthermore, pyramidal cell apoptosis was observed to accompany the loss of glucocorticoid receptors at the cornus ammonis 1 region of the hippocampus. Rats injected with corticosterone showed marked deficits in memory function. The present results imply that ROS generated from the glycation reaction of increased glucose levels caused by gluconeogenesis activation through glucocorticoid with proteins in the serum attack the hippocampus to induce neurodegeneration, resulting in cognitive deficits in rats.
The present study was conducted in order to determine whether oxidative stress during aging involves dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis in association with the emergence of cognitive deficits. When young rats were subjected to oxidative stress in the form of hyperoxia, thiobarbituric acid reactive substances, conjugated diene and lipid hydroperoxides increased markedly in the HPA axis. Vitamin E inhibited such increases in lipid peroxides in each organ. Levels of corticotrophin-releasing hormone in the hypothalamus and plasma levels of adrenocorticotrophic hormone and corticosterone were markedly elevated in young rats exposed to hyperoxia. However, young rats fed vitamin E-supplemented diets showed no abnormal hormone secretion, even after being subjected to hyperoxia. Furthermore, glucocorticosteroid receptors (GR) in pyramidal cells in the Cornus ammonis 1 region of the hippocampus in young rats were markedly decreased by oxidative stress. Similar phenomena were also observed in normal aged rats and young rats fed vitamin E-deficient diet kept in a normal atmosphere. Vitamin E supplementation prevented the decrease in GR in the hippocampus and the increase in corticosterone secretion caused by hyperoxia. These results suggest that oxidative stress induces oxidative damage in the hippocampus and the HPA axis during aging, resulting in a cognitive deficit in rats, and that negative-feedback inhibition on HPA activity was markedly dampened due to an increase in corticosterone levels caused by loss of GR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.