Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.
The control of charge transport in an active electronic device depends intimately on the modulation of the internal charge density by an external node. For example, a field-effect transistor relies on the gated electrostatic modulation of the channel charge produced by changing the relative position of the conduction and valence bands with respect to the electrodes. In molecular-scale devices, a longstanding challenge has been to create a true three-terminal device that operates in this manner (that is, by modifying orbital energy). Here we report the observation of such a solid-state molecular device, in which transport current is directly modulated by an external gate voltage. Resonance-enhanced coupling to the nearest molecular orbital is revealed by electron tunnelling spectroscopy, demonstrating direct molecular orbital gating in an electronic device. Our findings demonstrate that true molecular transistors can be created, and so enhance the prospects for molecularly engineered electronic devices.
Inelastic electron tunneling spectroscopy (IETS) of an alkanedithiol self-assembled monolayer (SAM) is investigated using a nanometer-scale device. The IETS spectrum of the octanedithiol device clearly shows vibrational signatures of an octanedithiolate, −SC 8 H 16 S−, bonded to gold electrodes. The pronounced IETS peaks correspond to vibrational modes perpendicular to the junction interface, which include the stretching modes of Au−S (at 33 mV) and C−C (at 133 mV) and the wagging mode of CH 2 (at 158 mV). The observed peak intensities and peak widths are in good agreement with theoretical predictions.
Single molecule electronic devices in which individual molecules are utilized as active electronic components constitute a promising approach for the ultimate miniaturization and integration of electronic devices in nanotechnology through the bottom-up strategy. Thus, the ability to understand, control, and exploit charge transport at the level of single molecules has become a long-standing desire of scientists and engineers from different disciplines for various potential device applications. Indeed, a study on charge transport through single molecules attached to metallic electrodes is a very challenging task, but rapid advances have been made in recent years. This review article focuses on experimental aspects of electronic devices made with single molecules, with a primary focus on the characterization and manipulation of charge transport in this regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.