Background We have previously reported that a new intronless gene for casein kinase 2α (CK2α), CSNK2A3, is expressed in human cells. The promoter of the well-known CK2α, CSNK2A1, displays characteristics of a housekeeping gene, whereas CSNK2A3 has a characteristic of a regulated promoter with two TATA boxes and a CAAT box. GPR68, a family of the G protein-coupled receptors, is also known as ovarian cancer G protein-coupled receptor 1 (OGR1). In the current study, we analyzed the roles of CK2α genes and neutral endopeptidase (NEP), a key enzyme that influences a variety of malignancies, in the OGR1-induced inhibition of A549 cell migration. Methods We analyzed the transcript expressions of both the CK2α genes (CSNK2A1 and CSNK2A3) and NEP upon OGR1 overexpression. Protein expression of CK2α and NEP were also analyzed. We further elucidated the functional roles of both CK2α and NEP in the OGR1-induced inhibition of A549 cell migration in vitro using a wound-healing assay. We also analyzed the molecular mechanisms involved in the OGR1-induced inhibition of lung cancer cell migration. Results The findings of this study showed that OGR1 upregulated the expression of CSNK2A3 but not CSNK2A1 in the A549 cells. The findings further suggested OGR1 also upregulates the expression of NEP. The OGR1-induced inhibition of A549 cell migration was abrogated completely by inhibition of CK2α activity, whereas partial abrogation (~ 30%) was observed in the presence of NEP inhibition. The results also revealed that OGR1 regulates CSNK2A3 via activation of Rac1/cdc42 and MAPKs pathways. CK2 is ubiquitously expressed, and in contrast, is believed to be a constitutively active enzyme, and its regulation appears to be independent of known second messengers. Conclusion In the current study, we report for the first time the OGR1-induced regulation of CSNK2A3, CK2αP, and NEP in A549 cancer cells. Our study also decoded the downstream cellular proteins of OGR1 as well as the molecular mechanism involved in OGR1-induced inhibition of A549 cell migration. The findings of this research suggest the potential therapeutic targets to inhibit lung cancer progression.
The leaf crude extract of Oroxylum indicum (L.) Kurz induces genomic DNA fragmentation, comet formation, and the inhibition of cell proliferation in the prostate cancer cell line PC3, as assessed by agarose gel electrophoresis, comet assay and MTT assay, respectively. The bioactive compound was purified through bioassay-guided fractionation using preparative HPLC and MTT assay. The light brown and water-soluble compound was characterized using 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR), and electrospray ionization (ESI) mass spectrometry. The compound was identified as a glycosylated hydroquinone derivative, 2-[p-(2-Carboxyhydrazino)phenoxy]-6-(hydroxymethyl) tetrahy-dro-2H-pyran-3,4,5-triol (molecular formula, C13H18N2O8; molecular mass = 330). The identified phytocompound has not been reported earlier elsewhere. Therefore, the common name of the novel anticancer phytocompound isolated from Oroxylum indicum in this current study is oroxyquinone. The half-maximal inhibitory concentration (IC50) of oroxyquinone on PC3 cells was 58.9 µM (95% CI = 54.5 to 63.7 µM). Treatment of PC3 cells with oroxyquinone induced genomic DNA fragmentation and chromatin condensation, increased in the annexin-V positive cells, arrested the cell cycle at S phases, and inhibited the cell migration; as assessed by comet assay, DAPI staining, flow cytometry and a wound healing assay, respectively. On the investigation of the molecular mechanism of the induction of apoptosis, the results indicated that oroxyquinone induced caspase-3 and PARP independent apoptosis but through the p38 pathway and the localization of AIF into the nucleus. The present study identifies a novel anticancer molecule and provides scientific evidence supporting the therapeutic potency of Oroxylum indicum for ethnomedicinal uses.
Several medicinal plants have been popularly known and widely used to cure various diseases throughout the planet since ancient times. Various types of plants have been found to cure different kinds of human diseases effectively. Several research are focused on finding specific compounds from medicinal plants that have effective medicinal properties in curing human diseases. Finding the bioactive compounds specific to a disease could help in understanding the properties of the compound towards a disease and thereby its application with more precision and convenience. Understanding the characteristics of the bioactive compound can help in large scale production to be commercially available globally as per the demands and it can direct to design for synthetic production. It will benefit in several ways in terms of reducing the amount of intake as lesser amount would be needed, reducing restriction of availability as the plant grow at certain environmental conditions and overcome inconvenience of transport/portability and preservation and unseasonal availability of the plant. In this short review, plant derived natural products; anticancer properties of cumin from Curcuma longa subsp and the importance of medicinal plants such as Cronton caudatus subsp are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.