The N-terminus of telethonin forms a unique structure linking two titin N-termini at the Z-disc. While a specific role for the C-terminus has not been established, several studies indicate it may have a regulatory function. Using a morpholino approach in Xenopus, we show that telethonin knockdown leads to embryonic paralysis, myocyte defects, and sarcomeric disruption. These myopathic defects can be rescued by expressing full-length telethonin mRNA in morpholino background, indicating that telethonin is required for myofibrillogenesis. However, a construct missing C-terminal residues is incapable of rescuing motility or sarcomere assembly in cultured myocytes. We, therefore, tested two additional constructs: one where four C-terminal phosphorylatable residues were mutated to alanines and another where terminal residues were randomly replaced. Data from these experiments support that the telethonin C-terminus is required for assembly, but in a context-dependent manner, indicating that factors and forces present in vivo can compensate for C-terminal truncation or mutation.
Since redox active metals are often transported across membranes into cells in the reduced state, we have investigated whether exogenous ferri-heme or heme bound to hemopexin (HPX), which delivers heme to cells via receptor-mediated endocytosis, interact with a cell growth-associated plasma membrane electron transport (PMET) pathway. PMET reduces the cell-impermeable tetrazolium salt, WST-1, in the presence of the mandatory low potential intermediate electron acceptor, mPMS. In human promyelocytic (HL60) cells, protoheme (iron protoporphyrin IX; 2,4-vinyl), mesoheme (2,4-ethyl) and deuteroheme (2,4-H) inhibited reduction of WST-1/mPMS in a saturable manner supporting interaction with a finite number of high affinity acceptor sites (Kd 221 nM for naturally occurring protoheme). A requirement for the redox-active iron was shown using gallium-protoporphyrin IX (PPIX) and tin-PPIX. Heme-hemopexin, but not apo-hemopexin, also inhibited WST-1 reduction, and copper was required. Importantly, since neither heme nor heme-hemopexin replace mPMS as an intermediate electron acceptor and since inhibition of WST-1/mPMS reduction requires living cells, the experimental evidence supports the view that heme and heme-hemopexin interact with electrons from PMET. We therefore propose that heme and heme-hemopexin are natural substrates for this growth-associated electron transfer across the plasma membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.