We present a framework to synthesize character movements based on high level parameters, such that the produced movements respect the manifold of human motion, trained on a large motion capture dataset. The learned motion manifold, which is represented by the hidden units of a convolutional autoencoder, represents motion data in sparse components which can be combined to produce a wide range of complex movements. To map from high level parameters to the motion manifold, we stack a deep feedforward neural network on top of the trained autoencoder. This network is trained to produce realistic motion sequences from parameters such as a curve over the terrain that the character should follow, or a target location for punching and kicking. The feedforward control network and the motion manifold are trained independently, allowing the user to easily switch between feedforward networks according to the desired interface, without re-training the motion manifold. Once motion is generated it can be edited by performing optimization in the space of the motion manifold. This allows for imposing kinematic constraints, or transforming the style of the motion, while ensuring the edited motion remains natural. As a result, the system can produce smooth, high quality motion sequences without any manual pre-processing of the training data.
We present a real-time character control mechanism using a novel neural network architecture called a Phase-Functioned Neural Network. In this network structure, the weights are computed via a cyclic function which uses the phase as an input. Along with the phase, our system takes as input user controls, the previous state of the character, the geometry of the scene, and automatically produces high quality motions that achieve the desired user control. The entire network is trained in an end-to-end fashion on a large dataset composed of locomotion such as walking, running, jumping, and climbing movements fitted into virtual environments. Our system can therefore automatically produce motions where the character adapts to different geometric environments such as walking and running over rough terrain, climbing over large rocks, jumping over obstacles, and crouching under low ceilings. Our network architecture produces higher quality results than time-series autoregressive models such as LSTMs as it deals explicitly with the latent variable of motion relating to the phase. Once trained, our system is also extremely fast and compact, requiring only milliseconds of execution time and a few megabytes of memory, even when trained on gigabytes of motion data. Our work is most appropriate for controlling characters in interactive scenes such as computer games and virtual reality systems.
Quadruped motion includes a wide variation of gaits such as walk, pace, trot and canter, and actions such as jumping, sitting, turning and idling. Applying existing data-driven character control frameworks to such data requires a significant amount of data preprocessing such as motion labeling and alignment. In this paper, we propose a novel neural network architecture called Mode-Adaptive Neural Networks for controlling quadruped characters. The system is composed of the motion prediction network and the gating network. At each frame, the motion prediction network computes the character state in the current frame given the state in the previous frame and the user-provided control signals. The gating network dynamically updates the weights of the motion prediction network by selecting and blending what we call the expert weights, each of which specializes in a particular movement. Due to the increased flexibility, the system can learn consistent expert weights across a wide range of non-periodic/periodic actions, from unstructured motion capture data, in an end-to-end fashion. In addition, the users are released from performing complex labeling of phases in different gaits. We show that this architecture is suitable for encoding the multi-modality of quadruped locomotion and synthesizing responsive motion in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.