States of hydrogen present in high-strength steels for use as bearing steel SUJ2 and hydrogen embrittlement susceptibility were examined using thermal desorption analysis (TDA) and tensile tests. SUJ2 specimens containing the retained austenite phase (γ R ) in the martensitic phase exhibited three hydrogen desorption peaks in the TDA profile. Two of the peaks desorbed at higher temperatures decreased with a decreasing amount of γ R , indicating they corresponded to desorption associated with γ R . Fracture strength in the presence of hydrogen increased with a decreasing amount of γ R and with an increasing strain rate. For the specimens containing γ R and hydrogen, a flat facet at the crack initiation site and a quasi-cleavage (QC) fracture in the initial crack propagation area were observed on the fracture surface. Local characterization using electron back-scattered diffraction (EBSD) revealed that the flat facet on the fracture surface corresponded not to γ R but to strain-induced martensite. In addition, the facet was on the {112} plane of martensite, which is the slip plane or deformation twin plane of body-centered-cubic metals. The reason for high hydrogen embrittlement susceptibility of the specimens containing γ R was attributed to the straininduced phase transformation at the crack initiation site of the flat facet and in the initial crack propagation area of the QC fracture. Furthermore, the strain rate dependency of hydrogen embrittlement susceptibility is presumably ascribable to local plastic deformation, i.e., the interaction between dislocations and hydrogen.
Synopsis : States of hydrogen present in high-strength steels for use as bearing steel SUJ2 and hydrogen embrittlement susceptibility were examined using thermal desorption analysis (TDA) and tensile tests. SUJ2 specimens containing retained austenite phase (γ R) in the martensite phase exhibited three hydrogen desorption peaks in the TDA profile. Two of the peaks desorbed at higher temperatures decreased with a decreasing amount of γ R , indicating they corresponded to desorption associated with γ R. Fracture strength in the presence of hydrogen increased with a decreasing amount of γ R and with an increasing strain rate. When the specimens contained γ R and hydrogen, a flat facet at the crack initiation site and a quasi-cleavage (QC) fracture in the initial crack propagation area were observed on the fracture surface. Local characterization using electron back-scattered diffraction (EBSD) revealed that the flat facet on the fracture surface corresponded not to γ R but to stress-induced martensite. In addition, the facet was {112} plane of martensite, which is the slip plane or deformation twin plane of body-centered-cubic metals. The reason for high hydrogen embrittlement susceptibility of the specimens containing γ R was attributed to the stress-induced phase transformation at the crack initiation site of the flat facet and in the initial crack propagation area of the QC fracture. Furthermore, the strain rate dependency of hydrogen embrittlement susceptibility is presumably ascribable to local plastic deformation, i.e., the interaction between dislocations and hydrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.