Favipiravir is an oral broad-spectrum inhibitor of viral RNA-dependent RNA polymerase that is approved for treatment of influenza in Japan. We conducted a prospective, randomized, open-label, multicenter trial of favipiravir for the treatment of COVID-19 at 25 hospitals across Japan. Eligible patients were adolescents and adults admitted with COVID-19 who were asymptomatic or mildly ill and had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. Patients were randomly assigned at a 1:1 ratio to early or late favipiravir therapy (the same regimen starting on day 6 instead of day 1). The primary endpoint was viral clearance by day 6. The secondary endpoint was change in viral load by day 6. Exploratory endpoints included time to defervescence and resolution of symptoms. Eighty-nine patients were enrolled, of whom 69 were virologically evaluable. Viral clearance occurred within 6 days in 66.7% and 56.1% of the early and late treatment groups (adjusted hazard ratio [aHR], 1.42; 95% confidence interval [95% CI], 0.76–2.62). Of 30 patients who had a fever (≥37.5°C) on day 1, time to defervescence was 2.1 days and 3.2 days in the early and late treatment groups (aHR, 1.88; 95%CI, 0.81–4.35). During therapy, 84.1% developed transient hyperuricemia. Favipiravir did not significantly improve viral clearance as measured by RT-PCR by day 6 but was associated with numerical reduction in time to defervescence. Neither disease progression nor death occurred to any of the patients in either treatment group during the 28-day participation (Japan Registry of Clinical Trials jRCTs041190120).
To meet the world’s demands on the development of sunlight-powered renewable energy production, triplet–triplet annihilation-based photon upconversion (TTA–UC) has raised great expectations. However, an ideal highly efficient, low-power, and in-air TTA–UC has not been achieved. Here, we report a novel self-assembly approach to achieve this, which enabled highly efficient TTA–UC even in the presence of oxygen. A newly developed lipophilic 9,10-diphenylanthracene-based emitter molecule functionalized with multiple hydrogen-bonding moieties spontaneously coassembled with a triplet sensitizer in organic media, showing efficient triplet sensitization and subsequent triplet energy migration among the preorganized chromophores. This supramolecular light-harvesting system shows a high UC quantum yield of 30% optimized at low excitation power in deaerated conditions. Significantly, the UC emission largely remains even in an air-saturated solution, and this approach is facilely applicable to organogel and solid-film systems.
Exploration of triplet-triplet annihilation based photon upconversion (TTA-UC) in aqueous environments faces difficulty such as chromophores insolubility and deactivation of excited triplets by dissolved oxygen molecules. We propose a new strategy of biopolymer-surfactant-chromophore coassembly to overcome these issues. Air-stable TTA-UC with a high upconversion efficiency of 13.5% was achieved in hydrogel coassembled from gelatin, Triton X-100 and upconverting chromophores (triplet sensitizer and emitter). This is comparable to the highest UC efficiency observed to date for air-saturated aqueous UC systems. Moreover, this is the first example of air-stable TTA-UC in the form of hydrogels, widening the applicability of TTA-UC in biological applications. The keys are two-fold. First, gelatin and the surfactant self-assemble in water to give a developed hierarchical structure with hydrophobic domains which accommodate chromophores up to high concentrations. Second, thick hydrogen-bonding networks of gelatin backbone prevent O inflow to the hydrophobic interior, as evidenced by long acceptor triplet lifetime of 4.9 ms. Air-stable TTA-UC was also achieved for gelatin with other nonionic surfactants (Tween 80 and Pluronic f127) and Triton X-100 with other gelling biopolymers (sodium alginate and agarose), demonstrating the versatility of current strategy.
It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and simple spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ∼37 nm. Thanks to this high diffusivity, only 0.5 mol % of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9.0%, offering rational design principles toward ultimately efficient solid-state upconverters.
A molecular self-assembly approach is developed to resolve an outstanding issue in triplet energy migration-based photon upconversion (TEM-UC), that is, air-stable TEM-UC in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.