We study the radial migration of dust particles in accreting protostellar disks analogous to the primordial solar nebula. This study takes account of the two dimensional (radial and normal) structure of the disk gas, including the effects of the variation in the gas velocity as a function of distance from the midplane. It is shown that the dust component of disks accretes slower than the gas component. At high altitude from the disk midplane, the gas rotates faster than particles because of the inward pressure gradient force, and its drag force causes particles to move outward in the radial direction. Viscous torque induces the gas within a scale height from the disk midplane to flow outward, carrying small (size < 100 micron at 10 AU) particles with it. Only particles at intermediate altitude or with sufficiently large sizes (> 1 mm at 10 AU) move inward. When the particles' radial velocities are averaged over the entire vertical direction, particles have a net inward flux. At large distances from the central star, particles migrate inward with a velocity much faster than the gas accretion velocity. However, their inward velocity is reduced below that of the gas in the inner regions of the disk. The rate of velocity decrease is a function of the particles' size. While larger particles retain fast accretion velocity until they approach closer to the star, 10 micron particles have slower velocity than the gas in the most part of the disk (r < 100 AU). This differential migration of particles causes the size fractionation. Dust disks composed mostly of small particles (size < 10 micron) accrete slower than gas disks, resulting in the increase in the dust-gas ratio during the gas accretion phase.Comment: ApJ, accepted, 17 pages, 14 figure
We analyze the dynamics of gas-dust coupling in the presence of stellar radiation pressure in circumstellar disks, which are in a transitional stage between the gas-dominated, optically thick, primordial nebulae, and the dust-dominated, optically thin Vega-type disks. Dust grains undergo radial migration, either leaving the disk owing to a strong radiation pressure or seeking a stable equilibrium orbit in corotation with gas. In our models of A-type stars surrounded by a total gas mass from a fraction to dozens of Earth masses, the outward migration speed of dust is comparable with the gas sound speed. Equilibrium orbits are circular, with exception of those signiÐcantly a †ected by radiation pressure, which can be strongly elliptic with apocenters extending beyond the bulk of the gas disk. The migration of dust gives rise to radial fractionation of dust and creates a variety of possible observed disk morphologies, which we compute by considering the equilibrium between the dust production and the dust-dust collisions removing particles from their equilibrium orbits. Large grains (typically km) are distributed Z200 throughout most of the gas disk. Smaller grains (in the range of 10È200 km) concentrate in a prominent ring structure in the outer region of the gas disk (presumably at radius D100 AU), where gas density is rapidly declining with radius. The width and density, as well as density contrast of the dust ring with respect to the inner dust disk, depend on the distribution of gas and the mechanical strength of the particles. Our results open the prospect for deducing the distribution of gas in circumstellar disks by observing their dust. We have qualitatively compared our models with two observed transitional disks around HR 4796A and HD 141569A. Dust migration can result in observation of a ring or a bimodal radial dust distribution, possibly very similar to the ones produced by gap-opening planets embedded in the disk, or shepherding it from inside or outside. We conclude that a convincing planet detection via dust imaging should include speciÐc nonaxisymmetric structure (spiral waves, streamers, resonant arcs) following from the dynamical simulations of perturbed disks.
We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous submm imagery suggested the existence of the dust-depleted cavity at r ≤ 46 AU, our observations reveal the presence of scattered light components as close as 0. ′′ 2 (∼ 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0. ′′ 5 (∼ 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h ∼ 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.