Abstractn the north central United States, populations of the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are highly variable across space, complicating effective aphid management. In this study we examined relationships of plant nutrients, landscape structure, and natural enemies with soybean aphid abundance across Iowa, Michigan, Minnesota, and Wisconsin, representing the range of conditions where soybean aphid outbreaks have occurred since its introduction. We sampled soybean aphid and its natural enemies, quantified vegetation land cover and measured soybean nutrients (potassium [K] and nitrogen [N]) in 26 soybean sites in 2005 and 2006. Multiple regression models found that aphid abundance was negatively associated with leaf K content in 2005, whereas it was negatively associated with habitat diversity (Simpson's index) and positively associated with leaf N content in 2006. These variables accounted for 25 and 27% of aphid variability in 2005 and 2006, respectively, suggesting that other sources of variability are also important. In addition, K content of soybean plants decreased with increasing prevalence of cornsoybean cropland in 2005, suggesting that landscapes that have a high intensification of agriculture (as indexed by increasing corn and soybean) are more likely to have higher aphid numbers. Soybean aphid natural enemies, 26 species of predators and parasitoids, was positively related to aphid abundance; however, enemyto-aphid abundance ratios were inversely related to aphid density, suggesting that soybean aphids are able to escape control by resident natural enemies. Overall, soybean aphid abundance was most associated with soybean leaf chemistry and landscape heterogeneity. Agronomic options that can ameliorate K deficiency and maintaining heterogeneity in the landscape may reduce aphid risk. KeywordsAphis glycines, biological control, landscape ecology, plant chemistry, potassium Disciplines Agriculture | Entomology CommentsThis article is from Environmental Entomology 39 (1) Soybean aphid natural enemies, 26 species of predators and parasitoids, was positively related to aphid abundance; however, enemy-to-aphid abundance ratios were inversely related to aphid density, suggesting that soybean aphids are able to escape control by resident natural enemies. Overall, soybean aphid abundance was most associated with soybean leaf chemistry and landscape heterogeneity. Agronomic options that can ameliorate K deÞciency and maintaining heterogeneity in the landscape may reduce aphid risk.
Seasonal abundance of resident parasitoids and predatory flies, and corresponding soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), densities were assessed in soybean fields from 2003 to 2006 at two locations in lower Michigan. Six parasitoid and nine predatory fly species were detected in 4 yr by using potted plants infested with soybean aphid placed in soybean fields. The parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) and the predatory flies Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae), and Allograpta obliqua Say (Diptera: Syrphidae) were most numerous. Generally, L. testaceipes was more abundant late in the soybean growing season, but it also occurred during soybean vegetative growth; A. obliqua was more abundant during vegetative growth; and A. aphidimyza was common throughout the season. Soybean plants were visually inspected to estimate densities of soybean aphid, mummified aphids, and immature predatory flies. From 2003 to 2006, parasitism rates were inversely correlated with aphid density: percentage of parasitism was always very low (< or = 0.1%) at high aphid densities (> 100 aphids per plant), and higher parasitism, up to 17%, was observed at very low aphid densities (< 1 aphid per plant). Populations of immature predatory flies, particularly A. aphidimyza, generally increased in soybean fields with increasing soybean aphid populations, but aphids always outnumbered immature flies by 100-21,000-fold when flies were detected. Rearing field-collected aphid in 2006 substantiated that parasitism varied widely, with parasitism in most cases < 10%. Based on findings of low parasitism and predation, positive response to changing aphid densities by predatory flies but not parasitoids, early season abundance primarily of predatory flies, and past findings on these taxa's diversity and abundance, we discuss the potential use of exotic parasitoids and predatory flies to enhance soybean aphid biological control.
Abstract. Functioning of plant-aphid-natural enemy interactions may be associated with the structure and composition of withinfield vegetation, neighborhood fields and field borders, and the regional plant community of cropped and noncropped areas. Farmand region-scale vegetation in the wheat-growing area of the North American Great Plains was hypothesized to effect the abundance of two hymenopteran parasitoids, that differ in physiological and behavioral attributes, of the key pest aphid of wheat, Diuraphis noxia (Mordvilko). The parasitoids had greater sensitivity to farm-scale vegetation (wheat strip rotation with or without spring-sown sunflower) than region-scale vegetation (degree of diversification with other crops and wheat fields converted to conservation grasslands). A two-way factorial design of scale (farm-and region-scale) revealed that parasitoid abundance in grass-dominant (homogeneous) areas especially benefited from adding sunflower to the wheat-fallow strip crop rotation. Considerable sensitivity of the analysis was added when adjusting for seasonality of vegetation, revealing that the region-scale effects were most prominent late season. From a management viewpoint, adding sunflower into the wheat production system, especially in relatively homogeneous vegetation regions, tends to promote local parasitoid populations during the summer when spring-sown plants are maturing and wheat is not in cultivation. Contrasting results for A. albipodus and L. testaceipes were consistent with expectations based on behavioral and physiological attributes of the two aphid parasitoid families they represent. Still, the general management interpretation seems robust for the two parasitoids and has relevance to both farm-and region-scale management schemes that are occurring in the wheat production zone of North American Great Plains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.